{ "cells": [ { "cell_type": "code", "execution_count": 7, "id": "loose-wrong", "metadata": {}, "outputs": [ { "ename": "ModuleNotFoundError", "evalue": "No module named 'src'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mlxmert_lrp\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mLxmertForQuestionAnswering\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mLxmertForQuestionAnsweringLRP\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0msrc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtasks\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mvqa_data\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0msrc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodeling_frcnn\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mGeneralizedRCNN\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0msrc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvqa_utils\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mutils\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0msrc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprocessing_image\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mPreprocess\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/media/data2/hila_chefer/lxmert/lxmert/src/lxmert_lrp.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 25\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtorch\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mnn\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 26\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnn\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mCrossEntropyLoss\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mSmoothL1Loss\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 27\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0msrc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlayers\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 28\u001b[0m from transformers.file_utils import (\n\u001b[1;32m 29\u001b[0m \u001b[0mModelOutput\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'src'" ] } ], "source": [ "from lxmert_lrp import LxmertForQuestionAnswering as LxmertForQuestionAnsweringLRP\n", "from src.tasks import vqa_data\n", "from src.modeling_frcnn import GeneralizedRCNN\n", "import src.vqa_utils as utils\n", "from src.processing_image import Preprocess\n", "from transformers import LxmertTokenizer\n", "from src.huggingface_lxmert import LxmertForQuestionAnswering\n", "\n", "from tqdm import tqdm\n", "from src.ExplanationGenerator import GeneratorOurs, GeneratorBaselines\n", "import random\n", "import cv2\n", "\n", "COCO_VAL_PATH = '/media/data2/hila_chefer/env_MMF/datasets/coco/subset_val/images/val2014/'\n", "\n", "OBJ_URL = \"https://raw.githubusercontent.com/airsplay/py-bottom-up-attention/master/demo/data/genome/1600-400-20/objects_vocab.txt\"\n", "ATTR_URL = \"https://raw.githubusercontent.com/airsplay/py-bottom-up-attention/master/demo/data/genome/1600-400-20/attributes_vocab.txt\"\n", "VQA_URL = \"https://raw.githubusercontent.com/airsplay/lxmert/master/data/vqa/trainval_label2ans.json\"" ] }, { "cell_type": "code", "execution_count": null, "id": "emerging-trace", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "royal-small", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.9" } }, "nbformat": 4, "nbformat_minor": 5 }