# coding=utf-8 # Copyleft 2019 project LXRT. import argparse import random import numpy as np import torch def get_optimizer(optim): # Bind the optimizer if optim == 'rms': print("Optimizer: Using RMSProp") optimizer = torch.optim.RMSprop elif optim == 'adam': print("Optimizer: Using Adam") optimizer = torch.optim.Adam elif optim == 'adamax': print("Optimizer: Using Adamax") optimizer = torch.optim.Adamax elif optim == 'sgd': print("Optimizer: sgd") optimizer = torch.optim.SGD elif 'bert' in optim: optimizer = 'bert' # The bert optimizer will be bind later. else: assert False, "Please add your optimizer %s in the list." % optim return optimizer def parse_args(): parser = argparse.ArgumentParser() # Data Splits parser.add_argument("--train", default='train') parser.add_argument("--valid", default='valid') parser.add_argument("--test", default=None) # Training Hyper-parameters parser.add_argument('--batchSize', dest='batch_size', type=int, default=256) parser.add_argument('--optim', default='bert') parser.add_argument('--lr', type=float, default=1e-4) parser.add_argument('--epochs', type=int, default=10) parser.add_argument('--dropout', type=float, default=0.1) parser.add_argument('--seed', type=int, default=9595, help='random seed') # Debugging parser.add_argument('--output', type=str, default='snap/test') parser.add_argument("--fast", action='store_const', default=False, const=True) parser.add_argument("--tiny", action='store_const', default=False, const=True) parser.add_argument("--tqdm", action='store_const', default=False, const=True) # Model Loading parser.add_argument('--load', type=str, default=None, help='Load the model (usually the fine-tuned model).') parser.add_argument('--loadLXMERT', dest='load_lxmert', type=str, default=None, help='Load the pre-trained lxmert model.') parser.add_argument('--loadLXMERTQA', dest='load_lxmert_qa', type=str, default=None, help='Load the pre-trained lxmert model with QA answer head.') parser.add_argument("--fromScratch", dest='from_scratch', action='store_const', default=False, const=True, help='If none of the --load, --loadLXMERT, --loadLXMERTQA is set, ' 'the model would be trained from scratch. If --fromScratch is' ' not specified, the model would load BERT-pre-trained weights by' ' default. ') # Optimization parser.add_argument("--mceLoss", dest='mce_loss', action='store_const', default=False, const=True) # LXRT Model Config # Note: LXRT = L, X, R (three encoders), Transformer parser.add_argument("--llayers", default=9, type=int, help='Number of Language layers') parser.add_argument("--xlayers", default=5, type=int, help='Number of CROSS-modality layers.') parser.add_argument("--rlayers", default=5, type=int, help='Number of object Relationship layers.') # lxmert Pre-training Config parser.add_argument("--taskMatched", dest='task_matched', action='store_const', default=False, const=True) parser.add_argument("--taskMaskLM", dest='task_mask_lm', action='store_const', default=False, const=True) parser.add_argument("--taskObjPredict", dest='task_obj_predict', action='store_const', default=False, const=True) parser.add_argument("--taskQA", dest='task_qa', action='store_const', default=False, const=True) parser.add_argument("--visualLosses", dest='visual_losses', default='obj,attr,feat', type=str) parser.add_argument("--qaSets", dest='qa_sets', default=None, type=str) parser.add_argument("--wordMaskRate", dest='word_mask_rate', default=0.15, type=float) parser.add_argument("--objMaskRate", dest='obj_mask_rate', default=0.15, type=float) # Training configuration parser.add_argument("--multiGPU", action='store_const', default=False, const=True) parser.add_argument("--numWorkers", dest='num_workers', default=0) # perturbation configuration parser.add_argument('--method', type=str, default='ours_no_lrp', choices=['ours_with_lrp', 'rollout', 'partial_lrp', 'transformer_att', 'raw_attn', 'attn_gradcam', 'ours_with_lrp_no_normalization', 'ours_no_lrp', 'ours_no_lrp_no_norm', 'ablation_no_aggregation', 'ablation_no_self_in_10'], help='') parser.add_argument('--num-samples', type=int, default=10000, help='') parser.add_argument('--is-positive-pert', type=bool, default=False, help='') parser.add_argument('--is-text-pert', type=bool, default=False, help='') parser.add_argument('--COCO_path', type=str, default='', help='path to COCO 2014 validation set') # Parse the arguments. args = parser.parse_args() # Bind optimizer class. args.optimizer = get_optimizer(args.optim) # Set seeds torch.manual_seed(args.seed) random.seed(args.seed) np.random.seed(args.seed) return args args = parse_args()