X1AOX1A
commited on
Commit
·
acdcb1e
1
Parent(s):
acfc3db
init commit
Browse files- .gitignore +1 -0
- UniPoll-t5/best_model/added_tokens.json +6 -0
- UniPoll-t5/best_model/config.json +32 -0
- UniPoll-t5/best_model/pytorch_model.bin +3 -0
- UniPoll-t5/best_model/special_tokens_map.json +7 -0
- UniPoll-t5/best_model/tokenizer_config.json +15 -0
- UniPoll-t5/best_model/trainer_state.json +1001 -0
- UniPoll-t5/best_model/training_args.bin +3 -0
- UniPoll-t5/best_model/vocab.txt +0 -0
- app.py +170 -0
- requirements.txt +410 -0
- utils.py +17 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__
|
UniPoll-t5/best_model/added_tokens.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<c>": 50001,
|
3 |
+
"<choices>": 50003,
|
4 |
+
"<title>": 50002,
|
5 |
+
"digit": 50000
|
6 |
+
}
|
UniPoll-t5/best_model/config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/root/Documents/CODES/UniPoll/checkpoints/imxly/t5-pegasus",
|
3 |
+
"architectures": [
|
4 |
+
"MT5ForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"d_ff": 2048,
|
7 |
+
"d_kv": 64,
|
8 |
+
"d_model": 768,
|
9 |
+
"decoder_start_token_id": 0,
|
10 |
+
"dense_act_fn": "gelu_new",
|
11 |
+
"dropout_rate": 0.1,
|
12 |
+
"eos_token_id": 1,
|
13 |
+
"feed_forward_proj": "gated-gelu",
|
14 |
+
"initializer_factor": 1.0,
|
15 |
+
"is_encoder_decoder": true,
|
16 |
+
"is_gated_act": true,
|
17 |
+
"layer_norm_epsilon": 1e-06,
|
18 |
+
"model_type": "mt5",
|
19 |
+
"num_decoder_layers": 12,
|
20 |
+
"num_heads": 12,
|
21 |
+
"num_layers": 12,
|
22 |
+
"output_past": true,
|
23 |
+
"pad_token_id": 0,
|
24 |
+
"relative_attention_max_distance": 128,
|
25 |
+
"relative_attention_num_buckets": 32,
|
26 |
+
"tie_word_embeddings": false,
|
27 |
+
"tokenizer_class": "T5Tokenizer",
|
28 |
+
"torch_dtype": "float32",
|
29 |
+
"transformers_version": "4.22.1",
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 50004
|
32 |
+
}
|
UniPoll-t5/best_model/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1741c956f991a7ba239b38322657b7780961f9831914604a5adb75297f6f837e
|
3 |
+
size 1100236621
|
UniPoll-t5/best_model/special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
UniPoll-t5/best_model/tokenizer_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"do_basic_tokenize": true,
|
4 |
+
"do_lower_case": true,
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"name_or_path": "/root/Documents/CODES/UniPoll/checkpoints/imxly/t5-pegasus",
|
7 |
+
"never_split": null,
|
8 |
+
"pad_token": "[PAD]",
|
9 |
+
"sep_token": "[SEP]",
|
10 |
+
"special_tokens_map_file": null,
|
11 |
+
"strip_accents": null,
|
12 |
+
"tokenize_chinese_chars": true,
|
13 |
+
"tokenizer_class": "T5PegasusTokenizer",
|
14 |
+
"unk_token": "[UNK]"
|
15 |
+
}
|
UniPoll-t5/best_model/trainer_state.json
ADDED
@@ -0,0 +1,1001 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 49.33,
|
3 |
+
"best_model_checkpoint": "outputs/UniPoll-t5/checkpoint-60760",
|
4 |
+
"epoch": 10.0,
|
5 |
+
"global_step": 60760,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.08,
|
12 |
+
"learning_rate": 2.9753127057274523e-05,
|
13 |
+
"loss": 16.5215,
|
14 |
+
"step": 500
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.16,
|
18 |
+
"learning_rate": 2.9506254114549046e-05,
|
19 |
+
"loss": 3.5706,
|
20 |
+
"step": 1000
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.25,
|
24 |
+
"learning_rate": 2.9259381171823572e-05,
|
25 |
+
"loss": 2.9107,
|
26 |
+
"step": 1500
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.33,
|
30 |
+
"learning_rate": 2.901250822909809e-05,
|
31 |
+
"loss": 2.6763,
|
32 |
+
"step": 2000
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.41,
|
36 |
+
"learning_rate": 2.8765635286372614e-05,
|
37 |
+
"loss": 2.4391,
|
38 |
+
"step": 2500
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.49,
|
42 |
+
"learning_rate": 2.8518762343647136e-05,
|
43 |
+
"loss": 2.2868,
|
44 |
+
"step": 3000
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.58,
|
48 |
+
"learning_rate": 2.827188940092166e-05,
|
49 |
+
"loss": 2.2185,
|
50 |
+
"step": 3500
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.66,
|
54 |
+
"learning_rate": 2.802501645819618e-05,
|
55 |
+
"loss": 2.0841,
|
56 |
+
"step": 4000
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.74,
|
60 |
+
"learning_rate": 2.7778143515470708e-05,
|
61 |
+
"loss": 2.013,
|
62 |
+
"step": 4500
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.82,
|
66 |
+
"learning_rate": 2.7531270572745227e-05,
|
67 |
+
"loss": 1.9524,
|
68 |
+
"step": 5000
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.91,
|
72 |
+
"learning_rate": 2.728439763001975e-05,
|
73 |
+
"loss": 1.9129,
|
74 |
+
"step": 5500
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.99,
|
78 |
+
"learning_rate": 2.7037524687294272e-05,
|
79 |
+
"loss": 1.8501,
|
80 |
+
"step": 6000
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 1.0,
|
84 |
+
"eval_choices_bleu1": 34.2743,
|
85 |
+
"eval_choices_bleu2": 27.071,
|
86 |
+
"eval_choices_bleu3": 23.8714,
|
87 |
+
"eval_choices_bleu4": 19.9582,
|
88 |
+
"eval_choices_rouge1": 43.056,
|
89 |
+
"eval_choices_rouge2": 30.797,
|
90 |
+
"eval_choices_rougeL": 40.79,
|
91 |
+
"eval_choices_rougeLsum": 30.362,
|
92 |
+
"eval_loss": 1.7218139171600342,
|
93 |
+
"eval_mean_rouge1": 44.783500000000004,
|
94 |
+
"eval_runtime": 613.1086,
|
95 |
+
"eval_samples_per_second": 3.303,
|
96 |
+
"eval_steps_per_second": 0.414,
|
97 |
+
"eval_title_bleu1": 39.1598,
|
98 |
+
"eval_title_bleu2": 24.8472,
|
99 |
+
"eval_title_bleu3": 17.1189,
|
100 |
+
"eval_title_bleu4": 11.4654,
|
101 |
+
"eval_title_rouge1": 46.511,
|
102 |
+
"eval_title_rouge2": 28.336,
|
103 |
+
"eval_title_rougeL": 43.814,
|
104 |
+
"eval_title_rougeLsum": 28.185,
|
105 |
+
"step": 6076
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 1.07,
|
109 |
+
"learning_rate": 2.6790651744568795e-05,
|
110 |
+
"loss": 1.7659,
|
111 |
+
"step": 6500
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 1.15,
|
115 |
+
"learning_rate": 2.654377880184332e-05,
|
116 |
+
"loss": 1.7064,
|
117 |
+
"step": 7000
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 1.23,
|
121 |
+
"learning_rate": 2.6296905859117843e-05,
|
122 |
+
"loss": 1.6739,
|
123 |
+
"step": 7500
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 1.32,
|
127 |
+
"learning_rate": 2.6050032916392366e-05,
|
128 |
+
"loss": 1.6589,
|
129 |
+
"step": 8000
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.4,
|
133 |
+
"learning_rate": 2.5803159973666885e-05,
|
134 |
+
"loss": 1.6193,
|
135 |
+
"step": 8500
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 1.48,
|
139 |
+
"learning_rate": 2.5556287030941408e-05,
|
140 |
+
"loss": 1.6175,
|
141 |
+
"step": 9000
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 1.56,
|
145 |
+
"learning_rate": 2.530941408821593e-05,
|
146 |
+
"loss": 1.6042,
|
147 |
+
"step": 9500
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 1.65,
|
151 |
+
"learning_rate": 2.5062541145490456e-05,
|
152 |
+
"loss": 1.5438,
|
153 |
+
"step": 10000
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 1.73,
|
157 |
+
"learning_rate": 2.481566820276498e-05,
|
158 |
+
"loss": 1.5275,
|
159 |
+
"step": 10500
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.81,
|
163 |
+
"learning_rate": 2.45687952600395e-05,
|
164 |
+
"loss": 1.5144,
|
165 |
+
"step": 11000
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 1.89,
|
169 |
+
"learning_rate": 2.432192231731402e-05,
|
170 |
+
"loss": 1.4911,
|
171 |
+
"step": 11500
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 1.97,
|
175 |
+
"learning_rate": 2.4075049374588544e-05,
|
176 |
+
"loss": 1.4301,
|
177 |
+
"step": 12000
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 2.0,
|
181 |
+
"eval_choices_bleu1": 36.2304,
|
182 |
+
"eval_choices_bleu2": 29.2436,
|
183 |
+
"eval_choices_bleu3": 26.0301,
|
184 |
+
"eval_choices_bleu4": 21.8164,
|
185 |
+
"eval_choices_rouge1": 45.164,
|
186 |
+
"eval_choices_rouge2": 33.104,
|
187 |
+
"eval_choices_rougeL": 42.835,
|
188 |
+
"eval_choices_rougeLsum": 32.498,
|
189 |
+
"eval_loss": 1.6042917966842651,
|
190 |
+
"eval_mean_rouge1": 47.2485,
|
191 |
+
"eval_runtime": 613.8133,
|
192 |
+
"eval_samples_per_second": 3.299,
|
193 |
+
"eval_steps_per_second": 0.414,
|
194 |
+
"eval_title_bleu1": 41.7754,
|
195 |
+
"eval_title_bleu2": 27.1102,
|
196 |
+
"eval_title_bleu3": 18.344,
|
197 |
+
"eval_title_bleu4": 12.3234,
|
198 |
+
"eval_title_rouge1": 49.333,
|
199 |
+
"eval_title_rouge2": 30.676,
|
200 |
+
"eval_title_rougeL": 46.561,
|
201 |
+
"eval_title_rougeLsum": 30.748,
|
202 |
+
"step": 12152
|
203 |
+
},
|
204 |
+
{
|
205 |
+
"epoch": 2.06,
|
206 |
+
"learning_rate": 2.3828176431863066e-05,
|
207 |
+
"loss": 1.4002,
|
208 |
+
"step": 12500
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"epoch": 2.14,
|
212 |
+
"learning_rate": 2.3581303489137592e-05,
|
213 |
+
"loss": 1.3791,
|
214 |
+
"step": 13000
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"epoch": 2.22,
|
218 |
+
"learning_rate": 2.3334430546412115e-05,
|
219 |
+
"loss": 1.3332,
|
220 |
+
"step": 13500
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 2.3,
|
224 |
+
"learning_rate": 2.3087557603686637e-05,
|
225 |
+
"loss": 1.3577,
|
226 |
+
"step": 14000
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.39,
|
230 |
+
"learning_rate": 2.284068466096116e-05,
|
231 |
+
"loss": 1.3483,
|
232 |
+
"step": 14500
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"epoch": 2.47,
|
236 |
+
"learning_rate": 2.259381171823568e-05,
|
237 |
+
"loss": 1.3584,
|
238 |
+
"step": 15000
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"epoch": 2.55,
|
242 |
+
"learning_rate": 2.2346938775510205e-05,
|
243 |
+
"loss": 1.3186,
|
244 |
+
"step": 15500
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"epoch": 2.63,
|
248 |
+
"learning_rate": 2.2100065832784728e-05,
|
249 |
+
"loss": 1.3283,
|
250 |
+
"step": 16000
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"epoch": 2.72,
|
254 |
+
"learning_rate": 2.185319289005925e-05,
|
255 |
+
"loss": 1.2867,
|
256 |
+
"step": 16500
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.8,
|
260 |
+
"learning_rate": 2.1606319947333773e-05,
|
261 |
+
"loss": 1.2766,
|
262 |
+
"step": 17000
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 2.88,
|
266 |
+
"learning_rate": 2.1359447004608296e-05,
|
267 |
+
"loss": 1.3025,
|
268 |
+
"step": 17500
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 2.96,
|
272 |
+
"learning_rate": 2.111257406188282e-05,
|
273 |
+
"loss": 1.2736,
|
274 |
+
"step": 18000
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"epoch": 3.0,
|
278 |
+
"eval_choices_bleu1": 36.9274,
|
279 |
+
"eval_choices_bleu2": 30.039,
|
280 |
+
"eval_choices_bleu3": 26.4107,
|
281 |
+
"eval_choices_bleu4": 22.0831,
|
282 |
+
"eval_choices_rouge1": 46.229,
|
283 |
+
"eval_choices_rouge2": 33.898,
|
284 |
+
"eval_choices_rougeL": 43.746,
|
285 |
+
"eval_choices_rougeLsum": 33.141,
|
286 |
+
"eval_loss": 1.5690504312515259,
|
287 |
+
"eval_mean_rouge1": 48.167500000000004,
|
288 |
+
"eval_runtime": 614.3575,
|
289 |
+
"eval_samples_per_second": 3.296,
|
290 |
+
"eval_steps_per_second": 0.413,
|
291 |
+
"eval_title_bleu1": 42.3694,
|
292 |
+
"eval_title_bleu2": 28.0839,
|
293 |
+
"eval_title_bleu3": 19.3916,
|
294 |
+
"eval_title_bleu4": 13.1408,
|
295 |
+
"eval_title_rouge1": 50.106,
|
296 |
+
"eval_title_rouge2": 31.608,
|
297 |
+
"eval_title_rougeL": 47.1,
|
298 |
+
"eval_title_rougeLsum": 31.399,
|
299 |
+
"step": 18228
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 3.04,
|
303 |
+
"learning_rate": 2.086570111915734e-05,
|
304 |
+
"loss": 1.2176,
|
305 |
+
"step": 18500
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 3.13,
|
309 |
+
"learning_rate": 2.0618828176431864e-05,
|
310 |
+
"loss": 1.2037,
|
311 |
+
"step": 19000
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 3.21,
|
315 |
+
"learning_rate": 2.0371955233706386e-05,
|
316 |
+
"loss": 1.2104,
|
317 |
+
"step": 19500
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 3.29,
|
321 |
+
"learning_rate": 2.012508229098091e-05,
|
322 |
+
"loss": 1.1522,
|
323 |
+
"step": 20000
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"epoch": 3.37,
|
327 |
+
"learning_rate": 1.987820934825543e-05,
|
328 |
+
"loss": 1.1969,
|
329 |
+
"step": 20500
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 3.46,
|
333 |
+
"learning_rate": 1.9631336405529957e-05,
|
334 |
+
"loss": 1.1861,
|
335 |
+
"step": 21000
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 3.54,
|
339 |
+
"learning_rate": 1.9384463462804477e-05,
|
340 |
+
"loss": 1.1536,
|
341 |
+
"step": 21500
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 3.62,
|
345 |
+
"learning_rate": 1.9137590520079e-05,
|
346 |
+
"loss": 1.1394,
|
347 |
+
"step": 22000
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 3.7,
|
351 |
+
"learning_rate": 1.8890717577353522e-05,
|
352 |
+
"loss": 1.1229,
|
353 |
+
"step": 22500
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 3.79,
|
357 |
+
"learning_rate": 1.8643844634628044e-05,
|
358 |
+
"loss": 1.1233,
|
359 |
+
"step": 23000
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 3.87,
|
363 |
+
"learning_rate": 1.8396971691902567e-05,
|
364 |
+
"loss": 1.1265,
|
365 |
+
"step": 23500
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"epoch": 3.95,
|
369 |
+
"learning_rate": 1.8150098749177093e-05,
|
370 |
+
"loss": 1.1438,
|
371 |
+
"step": 24000
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"epoch": 4.0,
|
375 |
+
"eval_choices_bleu1": 38.2715,
|
376 |
+
"eval_choices_bleu2": 30.7803,
|
377 |
+
"eval_choices_bleu3": 26.9954,
|
378 |
+
"eval_choices_bleu4": 22.6626,
|
379 |
+
"eval_choices_rouge1": 46.767,
|
380 |
+
"eval_choices_rouge2": 34.301,
|
381 |
+
"eval_choices_rougeL": 44.062,
|
382 |
+
"eval_choices_rougeLsum": 33.605,
|
383 |
+
"eval_loss": 1.5627468824386597,
|
384 |
+
"eval_mean_rouge1": 48.6515,
|
385 |
+
"eval_runtime": 625.5501,
|
386 |
+
"eval_samples_per_second": 3.237,
|
387 |
+
"eval_steps_per_second": 0.406,
|
388 |
+
"eval_title_bleu1": 42.7056,
|
389 |
+
"eval_title_bleu2": 28.0993,
|
390 |
+
"eval_title_bleu3": 19.498,
|
391 |
+
"eval_title_bleu4": 12.7399,
|
392 |
+
"eval_title_rouge1": 50.536,
|
393 |
+
"eval_title_rouge2": 31.852,
|
394 |
+
"eval_title_rougeL": 47.453,
|
395 |
+
"eval_title_rougeLsum": 31.678,
|
396 |
+
"step": 24304
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"epoch": 4.03,
|
400 |
+
"learning_rate": 1.7903225806451616e-05,
|
401 |
+
"loss": 1.0962,
|
402 |
+
"step": 24500
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 4.11,
|
406 |
+
"learning_rate": 1.7656352863726135e-05,
|
407 |
+
"loss": 1.0664,
|
408 |
+
"step": 25000
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 4.2,
|
412 |
+
"learning_rate": 1.7409479921000658e-05,
|
413 |
+
"loss": 1.0874,
|
414 |
+
"step": 25500
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 4.28,
|
418 |
+
"learning_rate": 1.716260697827518e-05,
|
419 |
+
"loss": 1.0608,
|
420 |
+
"step": 26000
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"epoch": 4.36,
|
424 |
+
"learning_rate": 1.6915734035549703e-05,
|
425 |
+
"loss": 1.0367,
|
426 |
+
"step": 26500
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"epoch": 4.44,
|
430 |
+
"learning_rate": 1.666886109282423e-05,
|
431 |
+
"loss": 1.0397,
|
432 |
+
"step": 27000
|
433 |
+
},
|
434 |
+
{
|
435 |
+
"epoch": 4.53,
|
436 |
+
"learning_rate": 1.642198815009875e-05,
|
437 |
+
"loss": 1.0378,
|
438 |
+
"step": 27500
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"epoch": 4.61,
|
442 |
+
"learning_rate": 1.617511520737327e-05,
|
443 |
+
"loss": 1.0143,
|
444 |
+
"step": 28000
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.69,
|
448 |
+
"learning_rate": 1.5928242264647793e-05,
|
449 |
+
"loss": 1.0186,
|
450 |
+
"step": 28500
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 4.77,
|
454 |
+
"learning_rate": 1.5681369321922316e-05,
|
455 |
+
"loss": 1.0243,
|
456 |
+
"step": 29000
|
457 |
+
},
|
458 |
+
{
|
459 |
+
"epoch": 4.86,
|
460 |
+
"learning_rate": 1.5434496379196842e-05,
|
461 |
+
"loss": 1.038,
|
462 |
+
"step": 29500
|
463 |
+
},
|
464 |
+
{
|
465 |
+
"epoch": 4.94,
|
466 |
+
"learning_rate": 1.5187623436471364e-05,
|
467 |
+
"loss": 1.0026,
|
468 |
+
"step": 30000
|
469 |
+
},
|
470 |
+
{
|
471 |
+
"epoch": 5.0,
|
472 |
+
"eval_choices_bleu1": 37.513,
|
473 |
+
"eval_choices_bleu2": 30.5119,
|
474 |
+
"eval_choices_bleu3": 26.8236,
|
475 |
+
"eval_choices_bleu4": 22.3797,
|
476 |
+
"eval_choices_rouge1": 46.999,
|
477 |
+
"eval_choices_rouge2": 34.451,
|
478 |
+
"eval_choices_rougeL": 44.427,
|
479 |
+
"eval_choices_rougeLsum": 33.652,
|
480 |
+
"eval_loss": 1.5795127153396606,
|
481 |
+
"eval_mean_rouge1": 48.658500000000004,
|
482 |
+
"eval_runtime": 619.9047,
|
483 |
+
"eval_samples_per_second": 3.267,
|
484 |
+
"eval_steps_per_second": 0.41,
|
485 |
+
"eval_title_bleu1": 42.3561,
|
486 |
+
"eval_title_bleu2": 27.804,
|
487 |
+
"eval_title_bleu3": 19.0851,
|
488 |
+
"eval_title_bleu4": 12.6803,
|
489 |
+
"eval_title_rouge1": 50.318,
|
490 |
+
"eval_title_rouge2": 31.494,
|
491 |
+
"eval_title_rougeL": 47.297,
|
492 |
+
"eval_title_rougeLsum": 31.461,
|
493 |
+
"step": 30380
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 5.02,
|
497 |
+
"learning_rate": 1.4940750493745885e-05,
|
498 |
+
"loss": 1.0107,
|
499 |
+
"step": 30500
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 5.1,
|
503 |
+
"learning_rate": 1.4693877551020408e-05,
|
504 |
+
"loss": 0.9664,
|
505 |
+
"step": 31000
|
506 |
+
},
|
507 |
+
{
|
508 |
+
"epoch": 5.18,
|
509 |
+
"learning_rate": 1.4447004608294932e-05,
|
510 |
+
"loss": 0.9342,
|
511 |
+
"step": 31500
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 5.27,
|
515 |
+
"learning_rate": 1.4200131665569453e-05,
|
516 |
+
"loss": 0.9632,
|
517 |
+
"step": 32000
|
518 |
+
},
|
519 |
+
{
|
520 |
+
"epoch": 5.35,
|
521 |
+
"learning_rate": 1.3953258722843976e-05,
|
522 |
+
"loss": 0.9448,
|
523 |
+
"step": 32500
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"epoch": 5.43,
|
527 |
+
"learning_rate": 1.37063857801185e-05,
|
528 |
+
"loss": 0.9669,
|
529 |
+
"step": 33000
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"epoch": 5.51,
|
533 |
+
"learning_rate": 1.3459512837393023e-05,
|
534 |
+
"loss": 0.9361,
|
535 |
+
"step": 33500
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 5.6,
|
539 |
+
"learning_rate": 1.3212639894667544e-05,
|
540 |
+
"loss": 0.9445,
|
541 |
+
"step": 34000
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 5.68,
|
545 |
+
"learning_rate": 1.2965766951942068e-05,
|
546 |
+
"loss": 0.9515,
|
547 |
+
"step": 34500
|
548 |
+
},
|
549 |
+
{
|
550 |
+
"epoch": 5.76,
|
551 |
+
"learning_rate": 1.271889400921659e-05,
|
552 |
+
"loss": 0.9488,
|
553 |
+
"step": 35000
|
554 |
+
},
|
555 |
+
{
|
556 |
+
"epoch": 5.84,
|
557 |
+
"learning_rate": 1.2472021066491112e-05,
|
558 |
+
"loss": 0.9145,
|
559 |
+
"step": 35500
|
560 |
+
},
|
561 |
+
{
|
562 |
+
"epoch": 5.92,
|
563 |
+
"learning_rate": 1.2225148123765636e-05,
|
564 |
+
"loss": 0.9493,
|
565 |
+
"step": 36000
|
566 |
+
},
|
567 |
+
{
|
568 |
+
"epoch": 6.0,
|
569 |
+
"eval_choices_bleu1": 38.7421,
|
570 |
+
"eval_choices_bleu2": 31.1954,
|
571 |
+
"eval_choices_bleu3": 27.0903,
|
572 |
+
"eval_choices_bleu4": 22.4639,
|
573 |
+
"eval_choices_rouge1": 47.617,
|
574 |
+
"eval_choices_rouge2": 34.86,
|
575 |
+
"eval_choices_rougeL": 44.679,
|
576 |
+
"eval_choices_rougeLsum": 34.003,
|
577 |
+
"eval_loss": 1.5864702463150024,
|
578 |
+
"eval_mean_rouge1": 48.966499999999996,
|
579 |
+
"eval_runtime": 615.3469,
|
580 |
+
"eval_samples_per_second": 3.291,
|
581 |
+
"eval_steps_per_second": 0.413,
|
582 |
+
"eval_title_bleu1": 42.4031,
|
583 |
+
"eval_title_bleu2": 28.2011,
|
584 |
+
"eval_title_bleu3": 19.3663,
|
585 |
+
"eval_title_bleu4": 12.8818,
|
586 |
+
"eval_title_rouge1": 50.316,
|
587 |
+
"eval_title_rouge2": 31.841,
|
588 |
+
"eval_title_rougeL": 47.179,
|
589 |
+
"eval_title_rougeLsum": 31.509,
|
590 |
+
"step": 36456
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 6.01,
|
594 |
+
"learning_rate": 1.1978275181040158e-05,
|
595 |
+
"loss": 0.9359,
|
596 |
+
"step": 36500
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 6.09,
|
600 |
+
"learning_rate": 1.1731402238314681e-05,
|
601 |
+
"loss": 0.9096,
|
602 |
+
"step": 37000
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 6.17,
|
606 |
+
"learning_rate": 1.1484529295589204e-05,
|
607 |
+
"loss": 0.9069,
|
608 |
+
"step": 37500
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 6.25,
|
612 |
+
"learning_rate": 1.1237656352863726e-05,
|
613 |
+
"loss": 0.89,
|
614 |
+
"step": 38000
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 6.34,
|
618 |
+
"learning_rate": 1.099078341013825e-05,
|
619 |
+
"loss": 0.8761,
|
620 |
+
"step": 38500
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 6.42,
|
624 |
+
"learning_rate": 1.0743910467412772e-05,
|
625 |
+
"loss": 0.8919,
|
626 |
+
"step": 39000
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 6.5,
|
630 |
+
"learning_rate": 1.0497037524687294e-05,
|
631 |
+
"loss": 0.8869,
|
632 |
+
"step": 39500
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 6.58,
|
636 |
+
"learning_rate": 1.0250164581961818e-05,
|
637 |
+
"loss": 0.8912,
|
638 |
+
"step": 40000
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 6.67,
|
642 |
+
"learning_rate": 1.000329163923634e-05,
|
643 |
+
"loss": 0.8885,
|
644 |
+
"step": 40500
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 6.75,
|
648 |
+
"learning_rate": 9.756418696510862e-06,
|
649 |
+
"loss": 0.8691,
|
650 |
+
"step": 41000
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 6.83,
|
654 |
+
"learning_rate": 9.509545753785386e-06,
|
655 |
+
"loss": 0.8882,
|
656 |
+
"step": 41500
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 6.91,
|
660 |
+
"learning_rate": 9.262672811059907e-06,
|
661 |
+
"loss": 0.8822,
|
662 |
+
"step": 42000
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 6.99,
|
666 |
+
"learning_rate": 9.01579986833443e-06,
|
667 |
+
"loss": 0.8622,
|
668 |
+
"step": 42500
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 7.0,
|
672 |
+
"eval_choices_bleu1": 38.5191,
|
673 |
+
"eval_choices_bleu2": 31.1743,
|
674 |
+
"eval_choices_bleu3": 27.2188,
|
675 |
+
"eval_choices_bleu4": 22.5257,
|
676 |
+
"eval_choices_rouge1": 47.345,
|
677 |
+
"eval_choices_rouge2": 34.733,
|
678 |
+
"eval_choices_rougeL": 44.637,
|
679 |
+
"eval_choices_rougeLsum": 33.956,
|
680 |
+
"eval_loss": 1.6173765659332275,
|
681 |
+
"eval_mean_rouge1": 49.0085,
|
682 |
+
"eval_runtime": 624.2904,
|
683 |
+
"eval_samples_per_second": 3.244,
|
684 |
+
"eval_steps_per_second": 0.407,
|
685 |
+
"eval_title_bleu1": 42.7395,
|
686 |
+
"eval_title_bleu2": 28.2813,
|
687 |
+
"eval_title_bleu3": 19.4836,
|
688 |
+
"eval_title_bleu4": 12.7587,
|
689 |
+
"eval_title_rouge1": 50.672,
|
690 |
+
"eval_title_rouge2": 32.013,
|
691 |
+
"eval_title_rougeL": 47.817,
|
692 |
+
"eval_title_rougeLsum": 31.899,
|
693 |
+
"step": 42532
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 7.08,
|
697 |
+
"learning_rate": 8.768926925608954e-06,
|
698 |
+
"loss": 0.8468,
|
699 |
+
"step": 43000
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 7.16,
|
703 |
+
"learning_rate": 8.522053982883475e-06,
|
704 |
+
"loss": 0.8209,
|
705 |
+
"step": 43500
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 7.24,
|
709 |
+
"learning_rate": 8.275181040158e-06,
|
710 |
+
"loss": 0.8379,
|
711 |
+
"step": 44000
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 7.32,
|
715 |
+
"learning_rate": 8.028308097432522e-06,
|
716 |
+
"loss": 0.8544,
|
717 |
+
"step": 44500
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 7.41,
|
721 |
+
"learning_rate": 7.781435154707045e-06,
|
722 |
+
"loss": 0.8394,
|
723 |
+
"step": 45000
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 7.49,
|
727 |
+
"learning_rate": 7.534562211981568e-06,
|
728 |
+
"loss": 0.8285,
|
729 |
+
"step": 45500
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 7.57,
|
733 |
+
"learning_rate": 7.28768926925609e-06,
|
734 |
+
"loss": 0.8333,
|
735 |
+
"step": 46000
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"epoch": 7.65,
|
739 |
+
"learning_rate": 7.0408163265306125e-06,
|
740 |
+
"loss": 0.8359,
|
741 |
+
"step": 46500
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 7.74,
|
745 |
+
"learning_rate": 6.793943383805135e-06,
|
746 |
+
"loss": 0.8176,
|
747 |
+
"step": 47000
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 7.82,
|
751 |
+
"learning_rate": 6.547070441079658e-06,
|
752 |
+
"loss": 0.842,
|
753 |
+
"step": 47500
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 7.9,
|
757 |
+
"learning_rate": 6.30019749835418e-06,
|
758 |
+
"loss": 0.8351,
|
759 |
+
"step": 48000
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 7.98,
|
763 |
+
"learning_rate": 6.053324555628703e-06,
|
764 |
+
"loss": 0.8367,
|
765 |
+
"step": 48500
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 8.0,
|
769 |
+
"eval_choices_bleu1": 38.7622,
|
770 |
+
"eval_choices_bleu2": 31.0867,
|
771 |
+
"eval_choices_bleu3": 26.9654,
|
772 |
+
"eval_choices_bleu4": 22.4556,
|
773 |
+
"eval_choices_rouge1": 47.531,
|
774 |
+
"eval_choices_rouge2": 34.756,
|
775 |
+
"eval_choices_rougeL": 44.649,
|
776 |
+
"eval_choices_rougeLsum": 33.959,
|
777 |
+
"eval_loss": 1.6293848752975464,
|
778 |
+
"eval_mean_rouge1": 49.2605,
|
779 |
+
"eval_runtime": 622.1469,
|
780 |
+
"eval_samples_per_second": 3.255,
|
781 |
+
"eval_steps_per_second": 0.408,
|
782 |
+
"eval_title_bleu1": 43.0901,
|
783 |
+
"eval_title_bleu2": 28.6471,
|
784 |
+
"eval_title_bleu3": 19.7616,
|
785 |
+
"eval_title_bleu4": 12.9726,
|
786 |
+
"eval_title_rouge1": 50.99,
|
787 |
+
"eval_title_rouge2": 32.44,
|
788 |
+
"eval_title_rougeL": 47.948,
|
789 |
+
"eval_title_rougeLsum": 32.24,
|
790 |
+
"step": 48608
|
791 |
+
},
|
792 |
+
{
|
793 |
+
"epoch": 8.06,
|
794 |
+
"learning_rate": 5.8064516129032256e-06,
|
795 |
+
"loss": 0.8004,
|
796 |
+
"step": 49000
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 8.15,
|
800 |
+
"learning_rate": 5.559578670177749e-06,
|
801 |
+
"loss": 0.789,
|
802 |
+
"step": 49500
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"epoch": 8.23,
|
806 |
+
"learning_rate": 5.312705727452272e-06,
|
807 |
+
"loss": 0.7843,
|
808 |
+
"step": 50000
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"epoch": 8.31,
|
812 |
+
"learning_rate": 5.065832784726793e-06,
|
813 |
+
"loss": 0.8102,
|
814 |
+
"step": 50500
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 8.39,
|
818 |
+
"learning_rate": 4.818959842001317e-06,
|
819 |
+
"loss": 0.7979,
|
820 |
+
"step": 51000
|
821 |
+
},
|
822 |
+
{
|
823 |
+
"epoch": 8.48,
|
824 |
+
"learning_rate": 4.5720868992758395e-06,
|
825 |
+
"loss": 0.8262,
|
826 |
+
"step": 51500
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 8.56,
|
830 |
+
"learning_rate": 4.325213956550362e-06,
|
831 |
+
"loss": 0.8149,
|
832 |
+
"step": 52000
|
833 |
+
},
|
834 |
+
{
|
835 |
+
"epoch": 8.64,
|
836 |
+
"learning_rate": 4.078341013824885e-06,
|
837 |
+
"loss": 0.8178,
|
838 |
+
"step": 52500
|
839 |
+
},
|
840 |
+
{
|
841 |
+
"epoch": 8.72,
|
842 |
+
"learning_rate": 3.831468071099407e-06,
|
843 |
+
"loss": 0.7796,
|
844 |
+
"step": 53000
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"epoch": 8.81,
|
848 |
+
"learning_rate": 3.5845951283739304e-06,
|
849 |
+
"loss": 0.8036,
|
850 |
+
"step": 53500
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"epoch": 8.89,
|
854 |
+
"learning_rate": 3.337722185648453e-06,
|
855 |
+
"loss": 0.8169,
|
856 |
+
"step": 54000
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 8.97,
|
860 |
+
"learning_rate": 3.0908492429229756e-06,
|
861 |
+
"loss": 0.8138,
|
862 |
+
"step": 54500
|
863 |
+
},
|
864 |
+
{
|
865 |
+
"epoch": 9.0,
|
866 |
+
"eval_choices_bleu1": 38.8037,
|
867 |
+
"eval_choices_bleu2": 31.1809,
|
868 |
+
"eval_choices_bleu3": 27.0585,
|
869 |
+
"eval_choices_bleu4": 22.3774,
|
870 |
+
"eval_choices_rouge1": 47.629,
|
871 |
+
"eval_choices_rouge2": 34.778,
|
872 |
+
"eval_choices_rougeL": 44.722,
|
873 |
+
"eval_choices_rougeLsum": 33.944,
|
874 |
+
"eval_loss": 1.6443856954574585,
|
875 |
+
"eval_mean_rouge1": 49.32,
|
876 |
+
"eval_runtime": 624.8802,
|
877 |
+
"eval_samples_per_second": 3.241,
|
878 |
+
"eval_steps_per_second": 0.406,
|
879 |
+
"eval_title_bleu1": 43.0453,
|
880 |
+
"eval_title_bleu2": 28.6763,
|
881 |
+
"eval_title_bleu3": 19.7491,
|
882 |
+
"eval_title_bleu4": 13.004,
|
883 |
+
"eval_title_rouge1": 51.011,
|
884 |
+
"eval_title_rouge2": 32.398,
|
885 |
+
"eval_title_rougeL": 47.974,
|
886 |
+
"eval_title_rougeLsum": 32.251,
|
887 |
+
"step": 54684
|
888 |
+
},
|
889 |
+
{
|
890 |
+
"epoch": 9.05,
|
891 |
+
"learning_rate": 2.8439763001974987e-06,
|
892 |
+
"loss": 0.7764,
|
893 |
+
"step": 55000
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"epoch": 9.13,
|
897 |
+
"learning_rate": 2.5971033574720213e-06,
|
898 |
+
"loss": 0.7939,
|
899 |
+
"step": 55500
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"epoch": 9.22,
|
903 |
+
"learning_rate": 2.3502304147465435e-06,
|
904 |
+
"loss": 0.8069,
|
905 |
+
"step": 56000
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 9.3,
|
909 |
+
"learning_rate": 2.1033574720210665e-06,
|
910 |
+
"loss": 0.7649,
|
911 |
+
"step": 56500
|
912 |
+
},
|
913 |
+
{
|
914 |
+
"epoch": 9.38,
|
915 |
+
"learning_rate": 1.8564845292955893e-06,
|
916 |
+
"loss": 0.7977,
|
917 |
+
"step": 57000
|
918 |
+
},
|
919 |
+
{
|
920 |
+
"epoch": 9.46,
|
921 |
+
"learning_rate": 1.609611586570112e-06,
|
922 |
+
"loss": 0.803,
|
923 |
+
"step": 57500
|
924 |
+
},
|
925 |
+
{
|
926 |
+
"epoch": 9.55,
|
927 |
+
"learning_rate": 1.3627386438446346e-06,
|
928 |
+
"loss": 0.7813,
|
929 |
+
"step": 58000
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"epoch": 9.63,
|
933 |
+
"learning_rate": 1.1158657011191574e-06,
|
934 |
+
"loss": 0.7645,
|
935 |
+
"step": 58500
|
936 |
+
},
|
937 |
+
{
|
938 |
+
"epoch": 9.71,
|
939 |
+
"learning_rate": 8.689927583936801e-07,
|
940 |
+
"loss": 0.7865,
|
941 |
+
"step": 59000
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"epoch": 9.79,
|
945 |
+
"learning_rate": 6.221198156682028e-07,
|
946 |
+
"loss": 0.7818,
|
947 |
+
"step": 59500
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 9.87,
|
951 |
+
"learning_rate": 3.752468729427255e-07,
|
952 |
+
"loss": 0.7572,
|
953 |
+
"step": 60000
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"epoch": 9.96,
|
957 |
+
"learning_rate": 1.283739302172482e-07,
|
958 |
+
"loss": 0.7788,
|
959 |
+
"step": 60500
|
960 |
+
},
|
961 |
+
{
|
962 |
+
"epoch": 10.0,
|
963 |
+
"eval_choices_bleu1": 38.8515,
|
964 |
+
"eval_choices_bleu2": 31.2992,
|
965 |
+
"eval_choices_bleu3": 27.2073,
|
966 |
+
"eval_choices_bleu4": 22.4633,
|
967 |
+
"eval_choices_rouge1": 47.688,
|
968 |
+
"eval_choices_rouge2": 34.913,
|
969 |
+
"eval_choices_rougeL": 44.77,
|
970 |
+
"eval_choices_rougeLsum": 34.038,
|
971 |
+
"eval_loss": 1.6531261205673218,
|
972 |
+
"eval_mean_rouge1": 49.33,
|
973 |
+
"eval_runtime": 620.225,
|
974 |
+
"eval_samples_per_second": 3.265,
|
975 |
+
"eval_steps_per_second": 0.41,
|
976 |
+
"eval_title_bleu1": 43.0602,
|
977 |
+
"eval_title_bleu2": 28.6495,
|
978 |
+
"eval_title_bleu3": 19.8146,
|
979 |
+
"eval_title_bleu4": 13.144,
|
980 |
+
"eval_title_rouge1": 50.972,
|
981 |
+
"eval_title_rouge2": 32.375,
|
982 |
+
"eval_title_rougeL": 47.919,
|
983 |
+
"eval_title_rougeLsum": 32.201,
|
984 |
+
"step": 60760
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"epoch": 10.0,
|
988 |
+
"step": 60760,
|
989 |
+
"total_flos": 1.262557342857001e+17,
|
990 |
+
"train_loss": 1.288209796626761,
|
991 |
+
"train_runtime": 17551.2786,
|
992 |
+
"train_samples_per_second": 27.692,
|
993 |
+
"train_steps_per_second": 3.462
|
994 |
+
}
|
995 |
+
],
|
996 |
+
"max_steps": 60760,
|
997 |
+
"num_train_epochs": 10,
|
998 |
+
"total_flos": 1.262557342857001e+17,
|
999 |
+
"trial_name": null,
|
1000 |
+
"trial_params": null
|
1001 |
+
}
|
UniPoll-t5/best_model/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53d331e9447f18c1699297a18369f397bdf5607c47ff32a23a2d6d9c4d795179
|
3 |
+
size 3503
|
UniPoll-t5/best_model/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gc
|
2 |
+
import sys
|
3 |
+
import torch
|
4 |
+
import argparse
|
5 |
+
import gradio as gr
|
6 |
+
from typing import List, Tuple
|
7 |
+
from transformers import AutoConfig
|
8 |
+
from transformers.models.mt5.modeling_mt5 import MT5ForConditionalGeneration
|
9 |
+
from utils import T5PegasusTokenizer
|
10 |
+
|
11 |
+
try:
|
12 |
+
from loguru import logger as logging
|
13 |
+
logging.add(sys.stderr, filter="my_module")
|
14 |
+
except ImportError:
|
15 |
+
import logging
|
16 |
+
|
17 |
+
import time
|
18 |
+
class TimerDecorator:
|
19 |
+
def __init__(self, func) :
|
20 |
+
self.func = func
|
21 |
+
|
22 |
+
def __call__(self, *args, **kwargs) :
|
23 |
+
start_time = time.time()
|
24 |
+
result = self.func(*args, **kwargs)
|
25 |
+
end_time = time.time()
|
26 |
+
t = end_time - start_time
|
27 |
+
logging.info(f"Function `{self.func.__name__}` took {round(t, 2)} s to run.")
|
28 |
+
return result
|
29 |
+
|
30 |
+
@TimerDecorator
|
31 |
+
def load_model(model_path, device="cpu"):
|
32 |
+
logging.info(f"Loading model from {model_path}")
|
33 |
+
config = AutoConfig.from_pretrained(model_path)
|
34 |
+
tokenizer = T5PegasusTokenizer.from_pretrained(model_path)
|
35 |
+
model = MT5ForConditionalGeneration.from_pretrained(model_path, config=config)
|
36 |
+
if device != "cpu":
|
37 |
+
model.to(device)
|
38 |
+
logging.info("Done.")
|
39 |
+
return model, tokenizer
|
40 |
+
|
41 |
+
def wrap_prompt(
|
42 |
+
post, comments,
|
43 |
+
prompt="生成 <title> 和 <choices>: [SEP] {post} [SEP] {comments}"
|
44 |
+
):
|
45 |
+
if not comments or comments == "":
|
46 |
+
logging.info("No comments input, comments will be ignored.")
|
47 |
+
prompt = prompt.replace(" [SEP] {comments}", "")
|
48 |
+
prompt = prompt.format(post=post)
|
49 |
+
else:
|
50 |
+
prompt = prompt.format(post=post, comments=comments)
|
51 |
+
logging.info(f"Wrapped prompt: {prompt}")
|
52 |
+
return prompt
|
53 |
+
|
54 |
+
@TimerDecorator
|
55 |
+
def generate(query, model, tokenizer, num_beams=4, device="cpu"):
|
56 |
+
logging.info("Generating output...")
|
57 |
+
tokens = tokenizer(query, return_tensors="pt")["input_ids"]
|
58 |
+
if device != "cpu":
|
59 |
+
tokens = tokens.to(device)
|
60 |
+
output = model.generate(tokens, num_beams=num_beams, max_length=100)
|
61 |
+
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
62 |
+
logging.info("Done.")
|
63 |
+
return output_text
|
64 |
+
|
65 |
+
def post_process(raw_output: str) -> Tuple[str, str]:
|
66 |
+
def same_title_choices(raw_output):
|
67 |
+
# return the same raw output as title and choices
|
68 |
+
# if no <title> or <choices> in raw_output
|
69 |
+
raw_output = raw_output.replace("<title>", "")
|
70 |
+
raw_output = raw_output.replace("<choices>", "")
|
71 |
+
return raw_output.strip(), [raw_output.strip()]
|
72 |
+
|
73 |
+
def split_choices(choices_str: str) -> List[str]:
|
74 |
+
choices = choices_str.split("<c>")
|
75 |
+
choices = [choice.strip() for choice in choices]
|
76 |
+
return choices
|
77 |
+
|
78 |
+
# extract title and choices from raw_output
|
79 |
+
# e.g. raw_output = "<title> 你 觉得 线 上 复试 公平 吗 <choices> 公平 <c> 不 公平"
|
80 |
+
if "<title>" in raw_output and "<choices>" in raw_output:
|
81 |
+
index1 = raw_output.index("<title>")
|
82 |
+
index2 = raw_output.index("<choices>")
|
83 |
+
if index1 > index2:
|
84 |
+
logging.debug(f"idx1>idx2, same title and choices will be used.\nraw_output: {raw_output}")
|
85 |
+
return same_title_choices(raw_output)
|
86 |
+
title = raw_output[index1+7: index2].strip() # "你 觉得 线 上 复试 公平 吗"
|
87 |
+
choices_str = raw_output[index2+9:].strip() # "公平 <c> 不 公平"
|
88 |
+
choices = split_choices(choices_str) # ["公平", "不 公平"]
|
89 |
+
else:
|
90 |
+
logging.debug(f"missing title/choices, same title and choices will be used.\nraw_output: {raw_output}")
|
91 |
+
title, choices = same_title_choices(raw_output)
|
92 |
+
|
93 |
+
def remove_blank(string):
|
94 |
+
return string.replace(" ", "")
|
95 |
+
|
96 |
+
title = remove_blank(title)
|
97 |
+
choices = [remove_blank(choice) for choice in choices]
|
98 |
+
return title, choices
|
99 |
+
|
100 |
+
def parse_args():
|
101 |
+
parser = argparse.ArgumentParser(description="Demo")
|
102 |
+
parser.add_argument("--model_path", type=str, default="./UniPoll-t5/best_model", help="path to the model.")
|
103 |
+
parser.add_argument("--device", type=str, default="cpu", help="specify the device to load the model, e.g. 'cpu', 'cuda:0'.")
|
104 |
+
parser.add_argument(
|
105 |
+
"--options",
|
106 |
+
nargs="+",
|
107 |
+
help="override some settings in the used config, the key-value pair "
|
108 |
+
"in xxx=yyy format will be merged into config file (deprecate), "
|
109 |
+
"change to --cfg-options instead.",
|
110 |
+
)
|
111 |
+
args = parser.parse_args()
|
112 |
+
return args
|
113 |
+
|
114 |
+
|
115 |
+
if __name__ == "__main__":
|
116 |
+
args = parse_args()
|
117 |
+
|
118 |
+
logging.info('Initializing Model...')
|
119 |
+
# prepare the model
|
120 |
+
model, tokenizer = load_model(args.model_path, args.device)
|
121 |
+
|
122 |
+
def submit(post, comments, num_beams):
|
123 |
+
try:
|
124 |
+
logging.info("Received post input: {}".format(post))
|
125 |
+
if comments:
|
126 |
+
logging.info("Received comments input: {}".format(comments))
|
127 |
+
|
128 |
+
query = wrap_prompt(post, comments)
|
129 |
+
raw_output = generate(
|
130 |
+
query, model, tokenizer, num_beams, args.device)
|
131 |
+
title, choices = post_process(raw_output) # post process
|
132 |
+
logging.info(f"Raw output: {raw_output}")
|
133 |
+
logging.info(f"Processed title: {title}")
|
134 |
+
logging.info(f"Processed choices: {choices}")
|
135 |
+
# return title, choices, raw_output
|
136 |
+
return title, choices
|
137 |
+
except Exception as e:
|
138 |
+
return "An error occurred: {}".format(str(e)), "An error occurred: {}".format(str(e))
|
139 |
+
finally:
|
140 |
+
gc.collect()
|
141 |
+
torch.cuda.empty_cache()
|
142 |
+
|
143 |
+
examples = [
|
144 |
+
["#哪吒,大鱼海棠重映#动画电影《哪吒之魔童降世》、《大鱼海棠》,以及雷佳音、佟丽娅主演的 《超时空同居》确定将重映。据最新数据显示,3月24日全国复工影院495家,复工率4.36%,单日票房2.7万元。", "我在人间贩卖黄昏,只为收集世间温柔,去见你。谢谢你的分享,来看看你。我的微博,随时恭候你的到..."],
|
145 |
+
["#线上复试是否能保障公平# 高考延期惹的祸,考研线上复试,那还能保证公平吗?", "这个世界上本来就没有绝对的公平。你可以说一个倒数第一考了第一,但考上了他也还是啥都不会。也可以说他会利用一切机会达到目的,反正结果就是人家考的好,你还找不出来证据。线上考试,平时考倒数的人进了年级前十。平时考试有水分,线上之后,那不就是在水里考?"],
|
146 |
+
["#断亲现象为何如此流行#?所谓“断亲”指的是当代年轻人懒于、疏于、不屑于跟亲戚交往、联系、互动,日常音信全无,哪怕在逢年过节期间,宁可独来独往,也不愿意走亲戚,甚至将此作为一种时尚生活方式来推崇。", ""]
|
147 |
+
]
|
148 |
+
|
149 |
+
description = """This is the demo of UniPoll. Please input post and comments. <div style='display:flex; gap: 0.25rem; '><a href='https://uni-poll.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a><a href='https://github.com/X1AOX1A/UniPoll'><img src='https://img.shields.io/badge/Github-Code-blue'></a><a href='https://arxiv.org/abs/2306.06851'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></div>
|
150 |
+
"""
|
151 |
+
|
152 |
+
demo = gr.Interface(
|
153 |
+
fn=submit,
|
154 |
+
inputs=[gr.Textbox(lines=1, label="Social Media Post", placeholder="Input post here..."),
|
155 |
+
gr.Textbox(lines=1, label="Social Media Comments (Optional)", placeholder="Input comments here..."),
|
156 |
+
gr.Number(value=4, label="Number of Beams", precision=0),
|
157 |
+
],
|
158 |
+
outputs=[gr.Textbox(lines=1, label="Generated Poll Question", placeholder="Generated poll question will be shown here"),
|
159 |
+
gr.Textbox(lines=1, label="Generated Poll Choices", placeholder="Generated poll choices will be shown here"),
|
160 |
+
], # question, choices
|
161 |
+
title="Demo of UniPoll",
|
162 |
+
description=description,
|
163 |
+
allow_flagging="never",
|
164 |
+
examples=examples,
|
165 |
+
)
|
166 |
+
|
167 |
+
demo.queue(max_size=10)
|
168 |
+
demo.launch(share=True, show_error=True)
|
169 |
+
|
170 |
+
# python app.py --model_path "./UniPoll-t5/best_model" --device "cpu"
|
requirements.txt
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==1.4.0
|
2 |
+
aiofiles==23.2.1
|
3 |
+
alabaster @ file:///home/ktietz/src/ci/alabaster_1611921544520/work
|
4 |
+
altair==5.0.1
|
5 |
+
anaconda-client==1.11.0
|
6 |
+
anaconda-navigator==2.3.1
|
7 |
+
anaconda-project @ file:///opt/conda/conda-bld/anaconda-project_1660339890420/work
|
8 |
+
annotated-types==0.5.0
|
9 |
+
antlr4-python3-runtime==4.8
|
10 |
+
anyio==3.7.1
|
11 |
+
appdirs==1.4.4
|
12 |
+
argon2-cffi @ file:///opt/conda/conda-bld/argon2-cffi_1645000214183/work
|
13 |
+
argon2-cffi-bindings @ file:///tmp/build/80754af9/argon2-cffi-bindings_1644569679365/work
|
14 |
+
arrow @ file:///opt/conda/conda-bld/arrow_1649166651673/work
|
15 |
+
astroid @ file:///tmp/abs_e5wkt48jiz/croots/recipe/astroid_1659023120113/work
|
16 |
+
astropy @ file:///opt/conda/conda-bld/astropy_1657786094003/work
|
17 |
+
astunparse==1.6.3
|
18 |
+
atomicwrites==1.4.0
|
19 |
+
attrs @ file:///opt/conda/conda-bld/attrs_1642510447205/work
|
20 |
+
Automat @ file:///tmp/build/80754af9/automat_1600298431173/work
|
21 |
+
autopep8 @ file:///opt/conda/conda-bld/autopep8_1650463822033/work
|
22 |
+
Babel @ file:///tmp/build/80754af9/babel_1620871417480/work
|
23 |
+
backcall @ file:///home/ktietz/src/ci/backcall_1611930011877/work
|
24 |
+
backports.functools-lru-cache @ file:///tmp/build/80754af9/backports.functools_lru_cache_1618170165463/work
|
25 |
+
backports.tempfile @ file:///home/linux1/recipes/ci/backports.tempfile_1610991236607/work
|
26 |
+
backports.weakref==1.0.post1
|
27 |
+
bcrypt @ file:///tmp/abs_6fpe92qzzo/croots/recipe/bcrypt_1659554336150/work
|
28 |
+
beautifulsoup4 @ file:///opt/conda/conda-bld/beautifulsoup4_1650462163268/work
|
29 |
+
binaryornot @ file:///tmp/build/80754af9/binaryornot_1617751525010/work
|
30 |
+
bitarray @ file:///opt/conda/conda-bld/bitarray_1657739645104/work
|
31 |
+
bkcharts==0.2
|
32 |
+
black @ file:///opt/conda/conda-bld/black_1660237809219/work
|
33 |
+
bleach @ file:///opt/conda/conda-bld/bleach_1641577558959/work
|
34 |
+
blinker==1.6.2
|
35 |
+
bokeh @ file:///tmp/abs_34854e1f-d7d3-4f22-85d9-1075588e4ecdga64o0qg/croots/recipe/bokeh_1658136654619/work
|
36 |
+
boto3 @ file:///tmp/abs_ae3c72db-af47-4298-baea-7270430e2c96scbpg1_h/croots/recipe/boto3_1657820109150/work
|
37 |
+
botocore @ file:///opt/conda/conda-bld/botocore_1657739486257/work
|
38 |
+
Bottleneck @ file:///opt/conda/conda-bld/bottleneck_1657175564434/work
|
39 |
+
brotlipy==0.7.0
|
40 |
+
cachetools==5.3.0
|
41 |
+
certifi @ file:///opt/conda/conda-bld/certifi_1663615672595/work/certifi
|
42 |
+
cffi @ file:///tmp/abs_98z5h56wf8/croots/recipe/cffi_1659598650955/work
|
43 |
+
chardet @ file:///tmp/build/80754af9/chardet_1607706775000/work
|
44 |
+
charset-normalizer @ file:///tmp/build/80754af9/charset-normalizer_1630003229654/work
|
45 |
+
click @ file:///tmp/build/80754af9/click_1646056590078/work
|
46 |
+
cloudpickle @ file:///tmp/build/80754af9/cloudpickle_1632508026186/work
|
47 |
+
clyent==1.2.2
|
48 |
+
cmake==3.26.3
|
49 |
+
colorama @ file:///opt/conda/conda-bld/colorama_1657009087971/work
|
50 |
+
colorcet @ file:///tmp/build/80754af9/colorcet_1651851439427/work
|
51 |
+
conda==23.1.0
|
52 |
+
conda-build==3.22.0
|
53 |
+
conda-content-trust @ file:///tmp/abs_5952f1c8-355c-4855-ad2e-538535021ba5h26t22e5/croots/recipe/conda-content-trust_1658126371814/work
|
54 |
+
conda-pack @ file:///tmp/build/80754af9/conda-pack_1611163042455/work
|
55 |
+
conda-package-handling @ file:///opt/conda/conda-bld/conda-package-handling_1663598473529/work
|
56 |
+
conda-repo-cli==1.0.20
|
57 |
+
conda-token @ file:///Users/paulyim/miniconda3/envs/c3i/conda-bld/conda-token_1662660369760/work
|
58 |
+
conda-verify==3.4.2
|
59 |
+
constantly==15.1.0
|
60 |
+
cookiecutter @ file:///opt/conda/conda-bld/cookiecutter_1649151442564/work
|
61 |
+
cryptography @ file:///tmp/build/80754af9/cryptography_1652101588893/work
|
62 |
+
cssselect==1.1.0
|
63 |
+
cycler @ file:///tmp/build/80754af9/cycler_1637851556182/work
|
64 |
+
Cython @ file:///opt/conda/conda-bld/cython_1663692770955/work
|
65 |
+
cytoolz==0.11.0
|
66 |
+
daal4py==2021.6.0
|
67 |
+
dask @ file:///tmp/abs_994957d9-ec12-411f-b953-c010f9d489d10hj3gz4k/croots/recipe/dask-core_1658513209934/work
|
68 |
+
datashader @ file:///tmp/abs_aa58dfo4_s/croots/recipe/datashader_1659349033064/work
|
69 |
+
datashape==0.5.4
|
70 |
+
debugpy @ file:///tmp/build/80754af9/debugpy_1637091799509/work
|
71 |
+
decorator @ file:///opt/conda/conda-bld/decorator_1643638310831/work
|
72 |
+
defusedxml @ file:///tmp/build/80754af9/defusedxml_1615228127516/work
|
73 |
+
diff-match-patch @ file:///Users/ktietz/demo/mc3/conda-bld/diff-match-patch_1630511840874/work
|
74 |
+
dill==0.3.7
|
75 |
+
distributed @ file:///tmp/abs_593da390-bd12-4acc-ba49-4c9993cbe8abgqg_w3rb/croots/recipe/distributed_1658520746481/work
|
76 |
+
docutils @ file:///opt/conda/conda-bld/docutils_1657175430858/work
|
77 |
+
entrypoints @ file:///tmp/build/80754af9/entrypoints_1649926439650/work
|
78 |
+
et-xmlfile==1.1.0
|
79 |
+
exceptiongroup==1.1.3
|
80 |
+
-e git+ssh://[email protected]/X1AOX1A/Demos.git@bddbd1d412227d9a27b0e3dc7c7fa9e5e17a614a#egg=fairseq&subdirectory=fairseq
|
81 |
+
fastapi==0.103.1
|
82 |
+
fastjsonschema @ file:///opt/conda/conda-bld/python-fastjsonschema_1661371079312/work
|
83 |
+
ffmpy==0.3.1
|
84 |
+
filelock @ file:///opt/conda/conda-bld/filelock_1647002191454/work
|
85 |
+
flake8 @ file:///opt/conda/conda-bld/flake8_1648129545443/work
|
86 |
+
Flask @ file:///home/ktietz/src/ci/flask_1611932660458/work
|
87 |
+
flatbuffers==23.5.9
|
88 |
+
fonttools==4.25.0
|
89 |
+
fsspec @ file:///opt/conda/conda-bld/fsspec_1659972197723/work
|
90 |
+
future @ file:///tmp/build/80754af9/future_1607571303524/work
|
91 |
+
gast==0.4.0
|
92 |
+
gensim @ file:///tmp/build/80754af9/gensim_1646806807927/work
|
93 |
+
gitdb==4.0.10
|
94 |
+
GitPython==3.1.32
|
95 |
+
glob2 @ file:///home/linux1/recipes/ci/glob2_1610991677669/work
|
96 |
+
gmpy2 @ file:///tmp/build/80754af9/gmpy2_1645438755360/work
|
97 |
+
google-auth==2.18.0
|
98 |
+
google-auth-oauthlib==1.0.0
|
99 |
+
google-pasta==0.2.0
|
100 |
+
gradio==3.43.2
|
101 |
+
gradio_client==0.5.0
|
102 |
+
greenlet @ file:///tmp/build/80754af9/greenlet_1628888132713/work
|
103 |
+
grpcio==1.54.0
|
104 |
+
h11==0.14.0
|
105 |
+
h5py @ file:///tmp/abs_4aewd3wzey/croots/recipe/h5py_1659091371897/work
|
106 |
+
HeapDict @ file:///Users/ktietz/demo/mc3/conda-bld/heapdict_1630598515714/work
|
107 |
+
holoviews @ file:///tmp/abs_eecc808c-455e-4be4-9911-ecf8341b3a34jfwskiqe/croots/recipe/holoviews_1658171506757/work
|
108 |
+
httpcore==0.17.3
|
109 |
+
httpx==0.24.1
|
110 |
+
huggingface-hub==0.16.4
|
111 |
+
hvplot @ file:///tmp/abs_6fcys5jcv1/croots/recipe/hvplot_1659026496554/work
|
112 |
+
hydra-core==1.0.7
|
113 |
+
hyperlink @ file:///tmp/build/80754af9/hyperlink_1610130746837/work
|
114 |
+
idna @ file:///tmp/build/80754af9/idna_1637925883363/work
|
115 |
+
imagecodecs @ file:///opt/conda/conda-bld/imagecodecs_1664561985385/work
|
116 |
+
imageio @ file:///tmp/abs_cd920173-f360-47c5-97b0-bf4d1076d5d4dvic0oys/croots/recipe/imageio_1658785036907/work
|
117 |
+
imagesize @ file:///opt/conda/conda-bld/imagesize_1657179498843/work
|
118 |
+
importlib-metadata @ file:///tmp/build/80754af9/importlib-metadata_1648544546694/work
|
119 |
+
importlib-resources==6.0.1
|
120 |
+
incremental @ file:///tmp/build/80754af9/incremental_1636629750599/work
|
121 |
+
inflection==0.5.1
|
122 |
+
iniconfig @ file:///home/linux1/recipes/ci/iniconfig_1610983019677/work
|
123 |
+
intake @ file:///opt/conda/conda-bld/intake_1647436631684/work
|
124 |
+
intervaltree @ file:///Users/ktietz/demo/mc3/conda-bld/intervaltree_1630511889664/work
|
125 |
+
ipykernel @ file:///opt/conda/conda-bld/ipykernel_1662361798230/work
|
126 |
+
ipython @ file:///tmp/abs_94gruux8u8/croots/recipe/ipython_1659529858706/work
|
127 |
+
ipython-genutils @ file:///tmp/build/80754af9/ipython_genutils_1606773439826/work
|
128 |
+
ipywidgets @ file:///tmp/build/80754af9/ipywidgets_1634143127070/work
|
129 |
+
isort @ file:///tmp/build/80754af9/isort_1628603791788/work
|
130 |
+
itemadapter @ file:///tmp/build/80754af9/itemadapter_1626442940632/work
|
131 |
+
itemloaders @ file:///opt/conda/conda-bld/itemloaders_1646805235997/work
|
132 |
+
itsdangerous @ file:///tmp/build/80754af9/itsdangerous_1621432558163/work
|
133 |
+
jax==0.4.9
|
134 |
+
jdcal @ file:///Users/ktietz/demo/mc3/conda-bld/jdcal_1630584345063/work
|
135 |
+
jedi @ file:///tmp/build/80754af9/jedi_1644297102865/work
|
136 |
+
jeepney @ file:///tmp/build/80754af9/jeepney_1627537048313/work
|
137 |
+
jellyfish @ file:///tmp/build/80754af9/jellyfish_1647944426575/work
|
138 |
+
Jinja2 @ file:///tmp/build/80754af9/jinja2_1612213139570/work
|
139 |
+
jinja2-time @ file:///opt/conda/conda-bld/jinja2-time_1649251842261/work
|
140 |
+
jmespath @ file:///Users/ktietz/demo/mc3/conda-bld/jmespath_1630583964805/work
|
141 |
+
joblib @ file:///tmp/build/80754af9/joblib_1635411271373/work
|
142 |
+
json5 @ file:///tmp/build/80754af9/json5_1624432770122/work
|
143 |
+
jsonschema @ file:///opt/conda/conda-bld/jsonschema_1663375472438/work
|
144 |
+
jupyter @ file:///tmp/abs_33h4eoipez/croots/recipe/jupyter_1659349046347/work
|
145 |
+
jupyter-console @ file:///opt/conda/conda-bld/jupyter_console_1647002188872/work
|
146 |
+
jupyter-contrib-core==0.4.2
|
147 |
+
jupyter-contrib-nbextensions==0.7.0
|
148 |
+
jupyter-highlight-selected-word==0.2.0
|
149 |
+
jupyter-nbextensions-configurator==0.6.1
|
150 |
+
jupyter-server @ file:///tmp/abs_b88b31b8-83b9-476d-a46d-e563c421f38fvsnyi1ur/croots/recipe/jupyter_server_1658754481507/work
|
151 |
+
jupyter_client @ file:///opt/conda/conda-bld/jupyter_client_1661848916004/work
|
152 |
+
jupyter_core @ file:///opt/conda/conda-bld/jupyter_core_1664917302524/work
|
153 |
+
jupyterlab @ file:///tmp/abs_12f3h01vmy/croots/recipe/jupyterlab_1658907535764/work
|
154 |
+
jupyterlab-pygments @ file:///tmp/build/80754af9/jupyterlab_pygments_1601490720602/work
|
155 |
+
jupyterlab-server @ file:///opt/conda/conda-bld/jupyterlab_server_1644500396812/work
|
156 |
+
jupyterlab-widgets @ file:///tmp/build/80754af9/jupyterlab_widgets_1609884341231/work
|
157 |
+
keras==2.12.0
|
158 |
+
keyring @ file:///tmp/build/80754af9/keyring_1638531355686/work
|
159 |
+
kiwisolver @ file:///opt/conda/conda-bld/kiwisolver_1653292039266/work
|
160 |
+
lazy-object-proxy @ file:///tmp/build/80754af9/lazy-object-proxy_1616529027849/work
|
161 |
+
libarchive-c @ file:///tmp/build/80754af9/python-libarchive-c_1617780486945/work
|
162 |
+
libclang==16.0.0
|
163 |
+
lit==16.0.3
|
164 |
+
llvmlite==0.38.0
|
165 |
+
locket @ file:///opt/conda/conda-bld/locket_1652903118915/work
|
166 |
+
loguru==0.7.0
|
167 |
+
lxml @ file:///opt/conda/conda-bld/lxml_1657545139709/work
|
168 |
+
lz4 @ file:///tmp/build/80754af9/lz4_1619516502891/work
|
169 |
+
Markdown @ file:///tmp/build/80754af9/markdown_1614363852612/work
|
170 |
+
markdown-it-py==3.0.0
|
171 |
+
MarkupSafe @ file:///tmp/build/80754af9/markupsafe_1621523467000/work
|
172 |
+
matplotlib @ file:///opt/conda/conda-bld/matplotlib-suite_1660167928326/work
|
173 |
+
matplotlib-inline @ file:///opt/conda/conda-bld/matplotlib-inline_1662014470464/work
|
174 |
+
mccabe @ file:///opt/conda/conda-bld/mccabe_1644221741721/work
|
175 |
+
mdurl==0.1.2
|
176 |
+
-e git+ssh://[email protected]/X1AOX1A/Constrained_Image_Caption.git@36bce6f4b517b8f5ea26ec00a171523ffd0fa874#egg=minigpt4
|
177 |
+
mistune @ file:///tmp/build/80754af9/mistune_1607364877025/work
|
178 |
+
mkl-fft==1.3.1
|
179 |
+
mkl-random @ file:///tmp/build/80754af9/mkl_random_1626186066731/work
|
180 |
+
mkl-service==2.4.0
|
181 |
+
ml-dtypes==0.1.0
|
182 |
+
mock @ file:///tmp/build/80754af9/mock_1607622725907/work
|
183 |
+
mpmath==1.2.1
|
184 |
+
msgpack @ file:///opt/conda/conda-bld/msgpack-python_1652362659880/work
|
185 |
+
multipledispatch @ file:///tmp/build/80754af9/multipledispatch_1607574243360/work
|
186 |
+
multiprocess==0.70.15
|
187 |
+
munkres==1.1.4
|
188 |
+
mypy-extensions==0.4.3
|
189 |
+
navigator-updater==0.3.0
|
190 |
+
nbclassic @ file:///opt/conda/conda-bld/nbclassic_1644943264176/work
|
191 |
+
nbclient @ file:///tmp/build/80754af9/nbclient_1650290509967/work
|
192 |
+
nbconvert @ file:///opt/conda/conda-bld/nbconvert_1649751911790/work
|
193 |
+
nbformat @ file:///opt/conda/conda-bld/nbformat_1663744952973/work
|
194 |
+
nest-asyncio @ file:///tmp/build/80754af9/nest-asyncio_1649847906199/work
|
195 |
+
networkx @ file:///opt/conda/conda-bld/networkx_1657784097507/work
|
196 |
+
nltk @ file:///opt/conda/conda-bld/nltk_1645628263994/work
|
197 |
+
nose @ file:///opt/conda/conda-bld/nose_1642704612149/work
|
198 |
+
notebook @ file:///tmp/abs_abf6xa6h6f/croots/recipe/notebook_1659083654985/work
|
199 |
+
numba @ file:///opt/conda/conda-bld/numba_1648040517072/work
|
200 |
+
numexpr @ file:///opt/conda/conda-bld/numexpr_1656940300424/work
|
201 |
+
numpy==1.23.5
|
202 |
+
numpydoc @ file:///opt/conda/conda-bld/numpydoc_1657529872251/work
|
203 |
+
nvidia-cublas-cu11==11.10.3.66
|
204 |
+
nvidia-cuda-cupti-cu11==11.7.101
|
205 |
+
nvidia-cuda-nvrtc-cu11==11.7.99
|
206 |
+
nvidia-cuda-runtime-cu11==11.7.99
|
207 |
+
nvidia-cudnn-cu11==8.5.0.96
|
208 |
+
nvidia-cufft-cu11==10.9.0.58
|
209 |
+
nvidia-curand-cu11==10.2.10.91
|
210 |
+
nvidia-cusolver-cu11==11.4.0.1
|
211 |
+
nvidia-cusparse-cu11==11.7.4.91
|
212 |
+
nvidia-nccl-cu11==2.14.3
|
213 |
+
nvidia-nvtx-cu11==11.7.91
|
214 |
+
oauthlib==3.2.2
|
215 |
+
olefile @ file:///Users/ktietz/demo/mc3/conda-bld/olefile_1629805411829/work
|
216 |
+
omegaconf==2.0.6
|
217 |
+
opencv-python==4.8.0.76
|
218 |
+
openpyxl==3.0.10
|
219 |
+
opt-einsum==3.3.0
|
220 |
+
orjson==3.9.7
|
221 |
+
packaging @ file:///tmp/build/80754af9/packaging_1637314298585/work
|
222 |
+
pandas==1.4.4
|
223 |
+
pandocfilters @ file:///opt/conda/conda-bld/pandocfilters_1643405455980/work
|
224 |
+
panel @ file:///tmp/abs_bb3d3b2f-b3ea-41c0-a72e-8f54852d5cdfs70inytz/croots/recipe/panel_1658133826470/work
|
225 |
+
param @ file:///tmp/build/80754af9/param_1636647414893/work
|
226 |
+
parsel @ file:///tmp/build/80754af9/parsel_1646722533460/work
|
227 |
+
parso @ file:///opt/conda/conda-bld/parso_1641458642106/work
|
228 |
+
partd @ file:///opt/conda/conda-bld/partd_1647245470509/work
|
229 |
+
pathlib @ file:///Users/ktietz/demo/mc3/conda-bld/pathlib_1629713961906/work
|
230 |
+
pathos==0.3.1
|
231 |
+
pathspec @ file:///tmp/abs_1foqurpsov/croots/recipe/pathspec_1659627126545/work
|
232 |
+
patsy==0.5.2
|
233 |
+
pep8==1.7.1
|
234 |
+
pexpect @ file:///tmp/build/80754af9/pexpect_1605563209008/work
|
235 |
+
pickleshare @ file:///tmp/build/80754af9/pickleshare_1606932040724/work
|
236 |
+
Pillow==9.2.0
|
237 |
+
pkginfo @ file:///tmp/build/80754af9/pkginfo_1643162084911/work
|
238 |
+
platformdirs @ file:///opt/conda/conda-bld/platformdirs_1662711380096/work
|
239 |
+
plotly @ file:///tmp/abs_7afcdfad-dbbb-49d2-adea-186abf525c45jbnd8p95/croots/recipe/plotly_1658160053621/work
|
240 |
+
pluggy @ file:///tmp/build/80754af9/pluggy_1648024445381/work
|
241 |
+
ply==3.11
|
242 |
+
portalocker==2.7.0
|
243 |
+
pox==0.3.3
|
244 |
+
poyo @ file:///tmp/build/80754af9/poyo_1617751526755/work
|
245 |
+
ppft==1.7.6.7
|
246 |
+
prometheus-client @ file:///tmp/abs_d3zeliano1/croots/recipe/prometheus_client_1659455100375/work
|
247 |
+
prompt-toolkit @ file:///tmp/build/80754af9/prompt-toolkit_1633440160888/work
|
248 |
+
Protego @ file:///tmp/build/80754af9/protego_1598657180827/work
|
249 |
+
protobuf==4.23.0
|
250 |
+
psutil @ file:///opt/conda/conda-bld/psutil_1656431268089/work
|
251 |
+
ptyprocess @ file:///tmp/build/80754af9/ptyprocess_1609355006118/work/dist/ptyprocess-0.7.0-py2.py3-none-any.whl
|
252 |
+
py @ file:///opt/conda/conda-bld/py_1644396412707/work
|
253 |
+
pyarrow==12.0.1
|
254 |
+
pyasn1 @ file:///Users/ktietz/demo/mc3/conda-bld/pyasn1_1629708007385/work
|
255 |
+
pyasn1-modules==0.2.8
|
256 |
+
pycocotools==2.0.6
|
257 |
+
pycodestyle @ file:///tmp/build/80754af9/pycodestyle_1636635402688/work
|
258 |
+
pycosat==0.6.3
|
259 |
+
pycparser @ file:///tmp/build/80754af9/pycparser_1636541352034/work
|
260 |
+
pyct @ file:///tmp/abs_68a517ee-55fb-480e-82ab-1a8adb440a58x7qfc024/croots/recipe/pyct_1658500310800/work
|
261 |
+
pycurl==7.45.1
|
262 |
+
pydantic==2.3.0
|
263 |
+
pydantic_core==2.6.3
|
264 |
+
pydeck==0.8.0
|
265 |
+
PyDispatcher==2.0.5
|
266 |
+
pydocstyle @ file:///tmp/build/80754af9/pydocstyle_1621600989141/work
|
267 |
+
pydub==0.25.1
|
268 |
+
pyerfa @ file:///tmp/build/80754af9/pyerfa_1621556109336/work
|
269 |
+
pyflakes @ file:///tmp/build/80754af9/pyflakes_1636644436481/work
|
270 |
+
Pygments==2.16.1
|
271 |
+
PyHamcrest @ file:///tmp/build/80754af9/pyhamcrest_1615748656804/work
|
272 |
+
PyJWT @ file:///opt/conda/conda-bld/pyjwt_1657544592787/work
|
273 |
+
pylint @ file:///tmp/abs_6fxmc66kyk/croots/recipe/pylint_1659110350161/work
|
274 |
+
pyls-spyder==0.4.0
|
275 |
+
Pympler==1.0.1
|
276 |
+
pyodbc @ file:///tmp/abs_d365zrcsdp/croots/recipe/pyodbc_1659513794382/work
|
277 |
+
pyOpenSSL @ file:///opt/conda/conda-bld/pyopenssl_1643788558760/work
|
278 |
+
pyparsing @ file:///opt/conda/conda-bld/pyparsing_1661452539315/work
|
279 |
+
PyQt5-sip==12.11.0
|
280 |
+
pyrsistent @ file:///tmp/build/80754af9/pyrsistent_1636110951836/work
|
281 |
+
PySocks @ file:///tmp/build/80754af9/pysocks_1605305812635/work
|
282 |
+
pytest==7.1.2
|
283 |
+
python-dateutil @ file:///tmp/build/80754af9/python-dateutil_1626374649649/work
|
284 |
+
python-lsp-black @ file:///opt/conda/conda-bld/python-lsp-black_1661852031497/work
|
285 |
+
python-lsp-jsonrpc==1.0.0
|
286 |
+
python-lsp-server @ file:///opt/conda/conda-bld/python-lsp-server_1661813814476/work
|
287 |
+
python-multipart==0.0.6
|
288 |
+
python-slugify @ file:///tmp/build/80754af9/python-slugify_1620405669636/work
|
289 |
+
python-snappy @ file:///tmp/build/80754af9/python-snappy_1610133040135/work
|
290 |
+
pytz @ file:///opt/conda/conda-bld/pytz_1654762638606/work
|
291 |
+
pytz-deprecation-shim==0.1.0.post0
|
292 |
+
pyviz-comms @ file:///tmp/build/80754af9/pyviz_comms_1623747165329/work
|
293 |
+
PyWavelets @ file:///tmp/build/80754af9/pywavelets_1648710015787/work
|
294 |
+
pyxdg @ file:///tmp/build/80754af9/pyxdg_1603822279816/work
|
295 |
+
PyYAML==6.0
|
296 |
+
pyzmq @ file:///opt/conda/conda-bld/pyzmq_1657724186960/work
|
297 |
+
QDarkStyle @ file:///tmp/build/80754af9/qdarkstyle_1617386714626/work
|
298 |
+
qstylizer @ file:///tmp/build/80754af9/qstylizer_1617713584600/work/dist/qstylizer-0.1.10-py2.py3-none-any.whl
|
299 |
+
QtAwesome @ file:///tmp/build/80754af9/qtawesome_1637160816833/work
|
300 |
+
qtconsole @ file:///opt/conda/conda-bld/qtconsole_1662018252641/work
|
301 |
+
QtPy @ file:///opt/conda/conda-bld/qtpy_1662014892439/work
|
302 |
+
queuelib==1.5.0
|
303 |
+
regex @ file:///tmp/abs_41f5bce5-0a2e-45aa-b231-1fd2fbd57753gfpe6sjm/croots/recipe/regex_1658257178822/work
|
304 |
+
requests @ file:///opt/conda/conda-bld/requests_1657734628632/work
|
305 |
+
requests-file @ file:///Users/ktietz/demo/mc3/conda-bld/requests-file_1629455781986/work
|
306 |
+
requests-oauthlib==1.3.1
|
307 |
+
rich==13.5.2
|
308 |
+
rope @ file:///opt/conda/conda-bld/rope_1643788605236/work
|
309 |
+
rsa==4.9
|
310 |
+
Rtree @ file:///tmp/build/80754af9/rtree_1618420843093/work
|
311 |
+
ruamel-yaml-conda @ file:///tmp/build/80754af9/ruamel_yaml_1616016711199/work
|
312 |
+
ruamel.yaml @ file:///croot/ruamel.yaml_1666304550667/work
|
313 |
+
ruamel.yaml.clib @ file:///croot/ruamel.yaml.clib_1666302247304/work
|
314 |
+
s3transfer @ file:///opt/conda/conda-bld/s3transfer_1654524197066/work
|
315 |
+
sacrebleu==2.3.1
|
316 |
+
sacremoses==0.0.53
|
317 |
+
scikit-image @ file:///tmp/build/80754af9/scikit-image_1648214171611/work
|
318 |
+
scikit-learn @ file:///tmp/build/80754af9/scikit-learn_1642617106979/work
|
319 |
+
scikit-learn-intelex==2021.20221004.171807
|
320 |
+
scipy==1.9.1
|
321 |
+
Scrapy @ file:///tmp/abs_e3bmwi01y8/croots/recipe/scrapy_1659598696235/work
|
322 |
+
seaborn @ file:///tmp/build/80754af9/seaborn_1629307859561/work
|
323 |
+
SecretStorage @ file:///tmp/build/80754af9/secretstorage_1614022780358/work
|
324 |
+
semantic-version==2.10.0
|
325 |
+
Send2Trash @ file:///tmp/build/80754af9/send2trash_1632406701022/work
|
326 |
+
service-identity @ file:///Users/ktietz/demo/mc3/conda-bld/service_identity_1629460757137/work
|
327 |
+
sip @ file:///tmp/abs_44cd77b_pu/croots/recipe/sip_1659012365470/work
|
328 |
+
six @ file:///tmp/build/80754af9/six_1644875935023/work
|
329 |
+
smart-open @ file:///opt/conda/conda-bld/smart_open_1651563547610/work
|
330 |
+
smmap==5.0.0
|
331 |
+
sniffio @ file:///tmp/build/80754af9/sniffio_1614030464178/work
|
332 |
+
snowballstemmer @ file:///tmp/build/80754af9/snowballstemmer_1637937080595/work
|
333 |
+
sortedcollections @ file:///tmp/build/80754af9/sortedcollections_1611172717284/work
|
334 |
+
sortedcontainers @ file:///tmp/build/80754af9/sortedcontainers_1623949099177/work
|
335 |
+
soupsieve @ file:///tmp/build/80754af9/soupsieve_1636706018808/work
|
336 |
+
speaksee==0.0.1
|
337 |
+
Sphinx @ file:///opt/conda/conda-bld/sphinx_1657784123546/work
|
338 |
+
sphinxcontrib-applehelp @ file:///home/ktietz/src/ci/sphinxcontrib-applehelp_1611920841464/work
|
339 |
+
sphinxcontrib-devhelp @ file:///home/ktietz/src/ci/sphinxcontrib-devhelp_1611920923094/work
|
340 |
+
sphinxcontrib-htmlhelp @ file:///tmp/build/80754af9/sphinxcontrib-htmlhelp_1623945626792/work
|
341 |
+
sphinxcontrib-jsmath @ file:///home/ktietz/src/ci/sphinxcontrib-jsmath_1611920942228/work
|
342 |
+
sphinxcontrib-qthelp @ file:///home/ktietz/src/ci/sphinxcontrib-qthelp_1611921055322/work
|
343 |
+
sphinxcontrib-serializinghtml @ file:///tmp/build/80754af9/sphinxcontrib-serializinghtml_1624451540180/work
|
344 |
+
spyder @ file:///opt/conda/conda-bld/spyder_1663056818299/work
|
345 |
+
spyder-kernels @ file:///opt/conda/conda-bld/spyder-kernels_1662457880976/work
|
346 |
+
SQLAlchemy @ file:///tmp/abs_18b3238f-9c23-4182-a392-63af30a93c1er8j_yw60/croots/recipe/sqlalchemy_1657867856580/work
|
347 |
+
starlette==0.27.0
|
348 |
+
statsmodels @ file:///tmp/build/80754af9/statsmodels_1648015433305/work
|
349 |
+
streamlit==1.25.0
|
350 |
+
streamlit-drawable-canvas==0.9.3
|
351 |
+
sympy @ file:///tmp/build/80754af9/sympy_1647853653589/work
|
352 |
+
tables @ file:///tmp/build/80754af9/pytables_1607975397488/work
|
353 |
+
tabulate @ file:///opt/conda/conda-bld/tabulate_1657784105888/work
|
354 |
+
TBB==0.2
|
355 |
+
tblib @ file:///Users/ktietz/demo/mc3/conda-bld/tblib_1629402031467/work
|
356 |
+
tenacity==8.2.2
|
357 |
+
tensorboard==2.12.3
|
358 |
+
tensorboard-data-server==0.7.0
|
359 |
+
tensorboardX==2.6.2
|
360 |
+
tensorflow==2.12.0
|
361 |
+
tensorflow-estimator==2.12.0
|
362 |
+
tensorflow-io-gcs-filesystem==0.32.0
|
363 |
+
termcolor==2.3.0
|
364 |
+
terminado @ file:///tmp/build/80754af9/terminado_1644322582718/work
|
365 |
+
testpath @ file:///opt/conda/conda-bld/testpath_1655908557405/work
|
366 |
+
text-unidecode @ file:///Users/ktietz/demo/mc3/conda-bld/text-unidecode_1629401354553/work
|
367 |
+
textdistance @ file:///tmp/build/80754af9/textdistance_1612461398012/work
|
368 |
+
threadpoolctl @ file:///Users/ktietz/demo/mc3/conda-bld/threadpoolctl_1629802263681/work
|
369 |
+
three-merge @ file:///tmp/build/80754af9/three-merge_1607553261110/work
|
370 |
+
tifffile @ file:///tmp/build/80754af9/tifffile_1627275862826/work
|
371 |
+
tinycss @ file:///tmp/build/80754af9/tinycss_1617713798712/work
|
372 |
+
tldextract @ file:///opt/conda/conda-bld/tldextract_1646638314385/work
|
373 |
+
toml @ file:///tmp/build/80754af9/toml_1616166611790/work
|
374 |
+
tomli @ file:///opt/conda/conda-bld/tomli_1657175507142/work
|
375 |
+
tomlkit @ file:///tmp/abs_56_0lnnq5x/croots/recipe/tomlkit_1658946880479/work
|
376 |
+
toolz @ file:///tmp/build/80754af9/toolz_1636545406491/work
|
377 |
+
torch==2.0.1
|
378 |
+
torchaudio==2.0.1
|
379 |
+
torchvision==0.15.2
|
380 |
+
tornado @ file:///tmp/build/80754af9/tornado_1606942317143/work
|
381 |
+
tqdm @ file:///opt/conda/conda-bld/tqdm_1664392687731/work
|
382 |
+
traitlets @ file:///tmp/build/80754af9/traitlets_1636710298902/work
|
383 |
+
triton==2.0.0
|
384 |
+
Twisted @ file:///tmp/abs_82802zpkox/croots/recipe/twisted_1659592759417/work
|
385 |
+
typing_extensions==4.7.1
|
386 |
+
tzdata==2023.3
|
387 |
+
tzlocal==4.3.1
|
388 |
+
ujson @ file:///opt/conda/conda-bld/ujson_1657544923770/work
|
389 |
+
Unidecode @ file:///tmp/build/80754af9/unidecode_1614712377438/work
|
390 |
+
urllib3 @ file:///tmp/abs_5dhwnz6atv/croots/recipe/urllib3_1659110457909/work
|
391 |
+
uvicorn==0.23.2
|
392 |
+
validators==0.20.0
|
393 |
+
w3lib @ file:///Users/ktietz/demo/mc3/conda-bld/w3lib_1629359764703/work
|
394 |
+
watchdog @ file:///tmp/build/80754af9/watchdog_1638367282716/work
|
395 |
+
wcwidth @ file:///Users/ktietz/demo/mc3/conda-bld/wcwidth_1629357192024/work
|
396 |
+
webencodings==0.5.1
|
397 |
+
websocket-client @ file:///tmp/build/80754af9/websocket-client_1614803975924/work
|
398 |
+
websockets==11.0.3
|
399 |
+
Werkzeug @ file:///opt/conda/conda-bld/werkzeug_1645628268370/work
|
400 |
+
whatthepatch @ file:///opt/conda/conda-bld/whatthepatch_1661795988879/work
|
401 |
+
widgetsnbextension @ file:///tmp/build/80754af9/widgetsnbextension_1644992802045/work
|
402 |
+
wrapt @ file:///tmp/abs_c335821b-6e43-4504-9816-b1a52d3d3e1eel6uae8l/croots/recipe/wrapt_1657814400492/work
|
403 |
+
wurlitzer @ file:///tmp/build/80754af9/wurlitzer_1638368168359/work
|
404 |
+
xarray @ file:///opt/conda/conda-bld/xarray_1639166117697/work
|
405 |
+
xlrd @ file:///tmp/build/80754af9/xlrd_1608072521494/work
|
406 |
+
XlsxWriter @ file:///opt/conda/conda-bld/xlsxwriter_1649073856329/work
|
407 |
+
yapf @ file:///tmp/build/80754af9/yapf_1615749224965/work
|
408 |
+
zict==2.1.0
|
409 |
+
zipp @ file:///opt/conda/conda-bld/zipp_1652341764480/work
|
410 |
+
zope.interface @ file:///tmp/build/80754af9/zope.interface_1625036153595/work
|
utils.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import jieba
|
2 |
+
from functools import partial
|
3 |
+
from transformers import BertTokenizer
|
4 |
+
|
5 |
+
class T5PegasusTokenizer(BertTokenizer):
|
6 |
+
def __init__(self, *args, **kwargs):
|
7 |
+
super().__init__(*args, **kwargs)
|
8 |
+
self.pre_tokenizer = partial(jieba.cut, HMM=False)
|
9 |
+
|
10 |
+
def _tokenize(self, text, *arg, **kwargs):
|
11 |
+
split_tokens = []
|
12 |
+
for text in self.pre_tokenizer(text):
|
13 |
+
if text in self.vocab:
|
14 |
+
split_tokens.append(text)
|
15 |
+
else:
|
16 |
+
split_tokens.extend(super()._tokenize(text))
|
17 |
+
return split_tokens
|