update layout
Browse files
app.py
CHANGED
@@ -131,13 +131,39 @@ def search(query_image, searcher=searcher):
|
|
131 |
|
132 |
blocks = gr.Blocks()
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
with blocks:
|
135 |
gr.Markdown(""" # CHM-Corr DEMO""")
|
136 |
-
gr.Markdown(
|
137 |
-
|
138 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
-
input_image = gr.Image(type="filepath")
|
141 |
run_btn = gr.Button("Classify")
|
142 |
gr.Markdown(""" ### CHM-Corr Output Visualization """)
|
143 |
viz_plot = gr.Image(type="pil", label="Visualization")
|
|
|
131 |
|
132 |
blocks = gr.Blocks()
|
133 |
|
134 |
+
tldr = """
|
135 |
+
We propose two architectures of interpretable image classifiers
|
136 |
+
that first explain, and then predict by harnessing
|
137 |
+
the visual correspondences between a query image and exemplars.
|
138 |
+
Our models improve on several out-of-distribution (OOD) ImageNet
|
139 |
+
datasets while achieving competitive performance on ImageNet
|
140 |
+
than the black-box baselines (e.g. ImageNet-pretrained ResNet-50).
|
141 |
+
On a large-scale human study (∼60 users per method per dataset)
|
142 |
+
on ImageNet and CUB, our correspondence-based explanations led
|
143 |
+
to human-alone image classification accuracy and human-AI team
|
144 |
+
accuracy that are consistently better than that of kNN.
|
145 |
+
We show that it is possible to achieve complementary human-AI
|
146 |
+
team accuracy (i.e., that is higher than either AI-alone or
|
147 |
+
human-alone), on ImageNet and CUB.
|
148 |
+
|
149 |
+
<div align="center">
|
150 |
+
<a href="https://github.com/anguyen8/visual-correspondence-XAI">Github Page</a>
|
151 |
+
</div>
|
152 |
+
"""
|
153 |
+
|
154 |
with blocks:
|
155 |
gr.Markdown(""" # CHM-Corr DEMO""")
|
156 |
+
gr.Markdown(f""" ## Description: \n {tldr}""")
|
157 |
+
|
158 |
+
with gr.Row():
|
159 |
+
input_image = gr.Image(type="filepath")
|
160 |
+
|
161 |
+
with gr.Column():
|
162 |
+
gr.Markdown(f"### Parameters:")
|
163 |
+
gr.Markdown(
|
164 |
+
"`N=50`\n `k=20` \nUsing `ImageNet Pretrained ResNet50` features"
|
165 |
+
)
|
166 |
|
|
|
167 |
run_btn = gr.Button("Classify")
|
168 |
gr.Markdown(""" ### CHM-Corr Output Visualization """)
|
169 |
viz_plot = gr.Image(type="pil", label="Visualization")
|