Spaces:
Running
on
Zero
Running
on
Zero
import copy | |
from typing import Optional, Tuple | |
import torch | |
import torch.nn.functional as F | |
import numpy as np | |
from torch import nn | |
from transformers import OwlViTConfig | |
# from transformers.models.owlvit.modeling_owlvit import OwlViTVisionTransformer | |
class OwlViTBoxPredictionHead(nn.Module): | |
def __init__(self, config: OwlViTConfig): | |
super().__init__() | |
width = config.vision_config.hidden_size | |
self.dense0 = nn.Linear(width, width) | |
self.dense1 = nn.Linear(width, width) | |
self.dense2 = nn.Linear(width, width) | |
self.dense3 = nn.Linear(width, width) | |
self.gelu = nn.GELU() | |
self.dense4 = nn.Linear(width, 4) | |
def forward(self, image_features: torch.Tensor) -> torch.FloatTensor: | |
output = self.dense0(image_features) | |
output = self.gelu(output) | |
output = self.dense1(output) | |
output = self.gelu(output) | |
output = self.dense2(output) | |
output = self.gelu(output) | |
output = self.dense3(output) | |
output = self.gelu(output) | |
output = self.dense4(output) | |
output = self.gelu(output) | |
return output | |
class OwlViTClassPredictionHead(nn.Module): | |
def __init__(self, config: OwlViTConfig): | |
super().__init__() | |
out_dim = config.text_config.hidden_size | |
self.query_dim = config.vision_config.hidden_size | |
self.dense0 = nn.Linear(self.query_dim, out_dim) | |
self.logit_shift = nn.Linear(self.query_dim, 1) | |
self.logit_scale = nn.Linear(self.query_dim, 1) | |
self.elu = nn.ELU() | |
def forward( | |
self, | |
image_embeds: torch.FloatTensor, | |
query_embeds: Optional[torch.FloatTensor], | |
query_mask: Optional[torch.Tensor], | |
) -> Tuple[torch.FloatTensor]: | |
image_class_embeds = self.dense0(image_embeds) | |
if query_embeds is None: | |
device = image_class_embeds.device | |
batch_size, num_patches = image_class_embeds.shape[:2] | |
pred_logits = torch.zeros((batch_size, num_patches, self.query_dim)).to(device) | |
return (pred_logits, image_class_embeds) | |
# Normalize image and text features | |
image_class_embeds = F.normalize(image_class_embeds, dim=-1) + 1e-6 | |
query_embeds = F.normalize(query_embeds, dim=-1) + 1e-6 | |
# Get class predictions | |
pred_logits = torch.einsum("...pd,...qd->...pq", image_class_embeds, query_embeds) | |
# Apply a learnable shift and scale to logits | |
logit_shift = self.logit_shift(image_embeds) | |
logit_scale = self.logit_scale(image_embeds) | |
logit_scale = self.elu(logit_scale) + 1 | |
pred_logits = (pred_logits + logit_shift) * logit_scale | |
if query_mask is not None: | |
if query_mask.ndim > 1: | |
query_mask = torch.unsqueeze(query_mask, dim=-2) | |
pred_logits = pred_logits.to(torch.float64) | |
pred_logits = torch.where(query_mask == 0, -1e6, pred_logits) | |
pred_logits = pred_logits.to(torch.float32) | |
return (pred_logits, image_class_embeds) | |
class OwlViTPredictionHead(nn.Module): | |
def __init__(self, config: OwlViTConfig, num_classes: int, finetuned: bool): | |
super().__init__() | |
out_dim = config.text_config.hidden_size | |
self.query_dim = config.vision_config.hidden_size | |
self.finetuned = finetuned | |
self.num_classes = num_classes | |
self.mlp_image = nn.Sequential( | |
nn.Flatten(), | |
nn.Linear(in_features=self.query_dim, out_features=self.query_dim), | |
nn.GELU(), | |
nn.Linear(in_features=self.query_dim, out_features=self.query_dim), | |
nn.GELU(), | |
nn.Linear(in_features=self.query_dim, out_features=out_dim), | |
nn.GELU(), | |
) | |
# if self.finetuned: | |
# self.cls_head = nn.Sequential( | |
# nn.GELU(), | |
# nn.Linear(in_features=out_dim, out_features=out_dim), | |
# nn.GELU() | |
# ) | |
def forward(self, | |
image_embeds: torch.FloatTensor, | |
query_embeds: torch.FloatTensor, | |
topk_idxs: torch.FloatTensor, | |
) -> Tuple[torch.FloatTensor]: | |
# Get class predictions: topk_idxs (batch_size, n_parts, 1), one_hot (batch_size, n_parts, n_patches*n_patches) | |
topk_idxs = torch.swapaxes(topk_idxs, 1, 2) | |
one_hot = torch.zeros(topk_idxs.shape[0], topk_idxs.shape[1], image_embeds.shape[1]).to(image_embeds.device).scatter_(2, topk_idxs, 1) | |
batch_size, n_parts = one_hot.shape[0], one_hot.shape[1] | |
# (batch_size, n_parts, 3600, 1) * (batch_size, 1, 3600, 1024) = (batch_size, n_parts, 3600, 1024).sum(dim=-2) | |
image_embeds = (one_hot.unsqueeze(-1) * image_embeds.unsqueeze(1)).sum(dim=-2) | |
# image_embeds = self.dense0(image_embeds) # (batch_size, n_patches, 1024) --> (.., .., 768) | |
image_embeds = self.mlp_image(image_embeds.view(-1, image_embeds.shape[-1])).view(batch_size, n_parts, -1) | |
query_embeds = query_embeds.view(batch_size, -1, query_embeds.shape[-1]) | |
# if self.finetuned: | |
# image_embeds = self.cls_head(image_embeds) | |
# query_embeds = query_embeds.view(batch_size, -1, query_embeds.shape[-1]) | |
# Normalize image and text features | |
image_embeds = F.normalize(image_embeds, dim=-1) + 1e-6 # (batch_size, n_parts, 768) | |
query_embeds = F.normalize(query_embeds, dim=-1) + 1e-6 # (batch_size, num_classes * n_parts, 768) | |
# Shape: torch.Size([bs, num_boxes, num_classes * num_parts]) | |
image_text_logits = torch.einsum('bnd, bid -> bni', image_embeds, query_embeds) | |
image_text_logits_reshaped = image_text_logits.view(-1, image_text_logits.shape[-1]) | |
# Shape: (bs, num_classes * num_parts, num_boxes) --> (bs, num_classes, num_parts, num_boxes) | |
pred_logits = image_text_logits.swapaxes(axis0=1, axis1=2).view(batch_size, self.num_classes, n_parts, -1) | |
pred_logits = torch.diagonal(pred_logits, dim1=-2, dim2=-1) # --> torch.Size([bs, num_classes, 12]) | |
#DEBUG: try add sigmoid here to see if it helps. PEIJIE: It does not help. | |
# pred_logits = pred_logits.sigmoid() | |
# pred_logits = abs(pred_logits) # for debugging | |
final_pred_logits = torch.sum(pred_logits, dim=-1) | |
return (image_text_logits_reshaped, final_pred_logits, pred_logits) | |
class OwlViTForClassification(nn.Module): | |
config_class = OwlViTConfig | |
def __init__(self, owlvit_det_model, num_classes, weight_dict, device, freeze_box_heads=False, train_box_heads_only=False, network_type=None, logits_from_teacher=False, finetuned: bool = False, custom_box_head: bool = False): | |
super(OwlViTForClassification, self).__init__() | |
self.config = owlvit_det_model.config | |
self.num_classes = num_classes | |
self.num_parts = 12 | |
self.device = device | |
self.sigmoid = nn.Sigmoid() | |
self.ce_loss = torch.nn.CrossEntropyLoss() | |
# Use CE loss for classification OR only train with contrastive loss | |
self.network_type = network_type | |
self.logits_from_teacher = logits_from_teacher | |
# Initialize OwlViT model from the teacher model | |
self.owlvit = copy.deepcopy(owlvit_det_model.owlvit) | |
self.layer_norm = copy.deepcopy(owlvit_det_model.layer_norm) | |
# For image-level classification | |
self.cls_head = OwlViTPredictionHead(self.config, self.num_classes, finetuned=finetuned) | |
# For box prediction | |
if custom_box_head: | |
self.box_head = OwlViTBoxPredictionHead(self.config) | |
else: | |
self.box_head = copy.deepcopy(owlvit_det_model.box_head) | |
# For box-level classification | |
# Why don't just: | |
# self.class_head = copy.deepcopy(owlvit_det_model.class_head) | |
self.class_head = OwlViTClassPredictionHead(self.config) | |
self.class_head.dense0.load_state_dict(owlvit_det_model.class_head.dense0.state_dict()) | |
self.class_head.logit_shift.load_state_dict(owlvit_det_model.class_head.logit_shift.state_dict()) | |
self.class_head.logit_scale.load_state_dict(owlvit_det_model.class_head.logit_scale.state_dict()) | |
# OwlViT: set equal weights for the bounding box, gIoU and classification losses | |
# self.matcher = DetrHungarianMatcher(class_cost=1, bbox_cost=1, giou_cost=1) | |
# Losses for the criterion in DETR/OwlViT | |
self.weight_dict = weight_dict | |
losses = ["cardinality"] | |
losses += ["boxes"] if weight_dict["loss_bbox"] > 0 else [] | |
losses += ["labels"] if weight_dict["loss_ce"] > 0 else [] | |
self.criterion = DetrLoss( | |
matcher=None, | |
num_parts=self.num_parts, | |
eos_coef=0.1, # Following facebook/detr-resnet-50 | |
losses=losses, | |
) | |
self.freeze_parameters(freeze_box_heads, train_box_heads_only) | |
del owlvit_det_model | |
def freeze_parameters(self, freeze_box_heads, train_box_heads_only): | |
# OwlViT's text encoder is frozen by default | |
for param in self.owlvit.text_model.parameters(): | |
param.requires_grad = False | |
for param in self.owlvit.text_projection.parameters(): | |
param.requires_grad = False | |
# SKIP finetuning box heads | |
if freeze_box_heads: | |
for param in self.box_head.parameters(): | |
param.requires_grad = False | |
for param in self.class_head.parameters(): | |
param.requires_grad = False | |
# SKIP finetuning vision encoder and MLP head for classification --> Adjust weights of box heads only | |
if train_box_heads_only: | |
for param in self.owlvit.parameters(): | |
param.requires_grad = False | |
for param in self.layer_norm.parameters(): | |
param.requires_grad = False | |
for param in self.cls_head.parameters(): | |
param.requires_grad = False | |
def update_num_classes(self, num_classes): | |
self.num_classes = num_classes | |
self.cls_head.num_classes = num_classes | |
def image_text_embedder(self, | |
input_ids: torch.Tensor, | |
pixel_values: torch.FloatTensor, | |
attention_mask: torch.Tensor, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
) -> Tuple[torch.FloatTensor]: | |
# Encode text and image | |
outputs = self.owlvit( | |
pixel_values=pixel_values, | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=True, | |
) | |
# Get image embeddings | |
last_hidden_state = outputs.vision_model_output[0] # 0: last_hidden_state; 1: pooled_output | |
image_embeds = self.owlvit.vision_model.post_layernorm(last_hidden_state) | |
# Resize class token | |
new_size = tuple(np.array(image_embeds.shape) - np.array((0, 1, 0))) | |
class_token_out = torch.broadcast_to(image_embeds[:, :1, :], new_size) | |
# Merge image embedding with class tokens | |
image_embeds = image_embeds[:, 1:, :] * class_token_out | |
image_embeds = self.layer_norm(image_embeds) | |
# Resize to [batch_size, num_patches, num_patches, hidden_size] | |
new_size = ( | |
image_embeds.shape[0], | |
int(np.sqrt(image_embeds.shape[1])), | |
int(np.sqrt(image_embeds.shape[1])), | |
image_embeds.shape[-1], | |
) | |
image_embeds = image_embeds.reshape(new_size) | |
text_embeds = outputs[-4] | |
return (text_embeds, image_embeds, outputs) | |
def image_embedder( | |
self, | |
pixel_values: torch.FloatTensor | |
) -> Tuple[torch.FloatTensor]: | |
# Get OwlViTModel vision embeddings (same as CLIP) | |
vision_outputs = self.owlvit.vision_model(pixel_values=pixel_values, return_dict=True) | |
# Apply post_layernorm to last_hidden_state, return non-projected output | |
last_hidden_state = vision_outputs[0] | |
image_embeds = self.owlvit.vision_model.post_layernorm(last_hidden_state) | |
# Resize class token | |
new_size = tuple(np.array(image_embeds.shape) - np.array((0, 1, 0))) | |
class_token_out = torch.broadcast_to(image_embeds[:, :1, :], new_size) | |
# Merge image embedding with class tokens | |
image_embeds = image_embeds[:, 1:, :] * class_token_out | |
image_embeds = self.layer_norm(image_embeds) | |
# Resize to [batch_size, num_patches, num_patches, hidden_size] | |
new_size = ( | |
image_embeds.shape[0], | |
int(np.sqrt(image_embeds.shape[1])), | |
int(np.sqrt(image_embeds.shape[1])), | |
image_embeds.shape[-1], | |
) | |
image_embeds = image_embeds.reshape(new_size) | |
return (image_embeds, vision_outputs) | |
def normalize_grid_corner_coordinates(self, feature_map: torch.FloatTensor): | |
# Computes normalized xy corner coordinates from feature_map. | |
if not feature_map.ndim == 4: | |
raise ValueError("Expected input shape is [batch_size, num_patches, num_patches, hidden_dim]") | |
device = feature_map.device | |
num_patches = feature_map.shape[1] | |
box_coordinates = np.stack(np.meshgrid(np.arange(1, num_patches + 1), np.arange(1, num_patches + 1)), axis=-1).astype(np.float32) | |
box_coordinates /= np.array([num_patches, num_patches], np.float32) | |
# Flatten (h, w, 2) -> (h*w, 2) | |
box_coordinates = box_coordinates.reshape(box_coordinates.shape[0] * box_coordinates.shape[1], box_coordinates.shape[2]) | |
box_coordinates = torch.from_numpy(box_coordinates).to(device) | |
return box_coordinates | |
def compute_box_bias(self, feature_map: torch.FloatTensor) -> torch.FloatTensor: | |
# The box center is biased to its position on the feature grid | |
box_coordinates = self.normalize_grid_corner_coordinates(feature_map) | |
box_coordinates = torch.clip(box_coordinates, 0.0, 1.0) | |
# Unnormalize xy | |
box_coord_bias = torch.log(box_coordinates + 1e-4) - torch.log1p(-box_coordinates + 1e-4) | |
# The box size is biased to the patch size | |
box_size = torch.full_like(box_coord_bias, 1.0 / feature_map.shape[-2]) | |
box_size_bias = torch.log(box_size + 1e-4) - torch.log1p(-box_size + 1e-4) | |
# Compute box bias | |
box_bias = torch.cat([box_coord_bias, box_size_bias], dim=-1) | |
return box_bias | |
def box_predictor( | |
self, | |
image_feats: torch.FloatTensor, | |
feature_map: torch.FloatTensor, | |
) -> torch.FloatTensor: | |
""" | |
Args: | |
image_feats: | |
Features extracted from the image, returned by the `image_text_embedder` method. | |
feature_map: | |
A spatial re-arrangement of image_features, also returned by the `image_text_embedder` method. | |
Returns: | |
pred_boxes: | |
List of predicted boxes (cxcywh normalized to 0, 1) nested within a dictionary. | |
""" | |
# Bounding box detection head [batch_size, num_boxes, 4]. | |
pred_boxes = self.box_head(image_feats) | |
# Compute the location of each token on the grid and use it to compute a bias for the bbox prediction | |
pred_boxes += self.compute_box_bias(feature_map) | |
pred_boxes = self.sigmoid(pred_boxes) | |
return pred_boxes | |
def class_predictor( | |
self, | |
image_feats: torch.FloatTensor, | |
query_embeds: Optional[torch.FloatTensor] = None, | |
query_mask: Optional[torch.Tensor] = None, | |
) -> Tuple[torch.FloatTensor]: | |
""" | |
Args: | |
image_feats: | |
Features extracted from the `image_text_embedder`. | |
query_embeds: | |
Text query embeddings. | |
query_mask: | |
Must be provided with query_embeddings. A mask indicating which query embeddings are valid. | |
""" | |
(pred_logits, image_class_embeds) = self.class_head(image_feats, query_embeds, query_mask) | |
return (pred_logits, image_class_embeds) | |
def _get_text_query_mask(self, text_inputs, text_embeds, batch_size: int): | |
# Embed images and text queries | |
input_ids = text_inputs["input_ids"] | |
# Reshape from [batch_size * max_text_queries, hidden_dim] -> [batch_size, max_text_queries, hidden_dim] | |
max_text_queries = input_ids.shape[0] // batch_size | |
text_embeds = text_embeds.reshape(batch_size, max_text_queries, text_embeds.shape[-1]) | |
# If first token is 0, then this is a padded query [batch_size, num_queries]. | |
input_ids = input_ids.reshape(batch_size, max_text_queries, input_ids.shape[-1]) | |
query_mask = input_ids[..., 0] > 0 | |
return query_mask, text_embeds | |
def forward(self, image_inputs, text_inputs_parts, text_embeds, targets: dict = None): | |
# Store outputs for computing losses | |
loss_dict = {} | |
if not isinstance(image_inputs, torch.Tensor): | |
feature_map, _ = self.image_embedder(pixel_values = image_inputs['pixel_values']) | |
else: | |
feature_map = image_inputs | |
batch_size, num_patches, num_patches, hidden_dim = feature_map.shape | |
image_feats = torch.reshape(feature_map, (batch_size, num_patches * num_patches, hidden_dim)) | |
if self.logits_from_teacher: | |
teacher_boxes_logits = torch.stack([target["logits"] for target in targets], dim=0).to(self.device) | |
topk_scores, topk_idxs = torch.topk(teacher_boxes_logits, k=1, dim=1) | |
else: | |
text_embeds_parts = self.owlvit.get_text_features(**text_inputs_parts) | |
# # Embed images and text queries | |
query_mask, text_embeds_parts = self._get_text_query_mask(text_inputs_parts, text_embeds_parts, batch_size) | |
# Predict object classes [batch_size, num_patches, num_queries+1] | |
pred_logits_parts, class_embeds = self.class_predictor(image_feats, text_embeds_parts, query_mask) | |
# Predict object boxes | |
pred_boxes = self.box_predictor(image_feats, feature_map) | |
# Get the top-1 predictions | |
scores = self.sigmoid(pred_logits_parts) | |
topk_scores, topk_idxs = torch.topk(scores, k=1, dim=1) | |
mapping_indices = [(selected_indices, torch.tensor(list(range(self.num_parts))).to(self.device)) for selected_indices in topk_idxs.squeeze(1)] | |
# get the selected_indexs for mapping_indices | |
selected_idxs = torch.stack([item[0].cpu() for item in mapping_indices]) | |
loss_dict["pred_boxes"] = torch.gather(pred_boxes.cpu(), 1, selected_idxs.unsqueeze(-1).expand(*selected_idxs.shape, 4)) | |
if targets is not None: | |
# ---------------------------------------------------------------------------------------- | |
# Computing box + class + symmetric losses for box selection | |
# ---------------------------------------------------------------------------------------- | |
outputs_loss = {} | |
outputs_loss["logits"] = pred_logits_parts | |
outputs_loss["pred_boxes"] = pred_boxes | |
# Compute box + class losses | |
loss_dict = self.criterion(outputs_loss, targets, mapping_indices) | |
# Compute symmetric loss to get rid of the teacher model | |
logits_per_image = torch.softmax(pred_logits_parts, dim=1) | |
logits_per_text = torch.softmax(pred_logits_parts, dim=-1) | |
# For getting rid of the teacher model | |
if self.weight_dict["loss_sym_box_label"] > 0: | |
sym_loss_box_label = self.loss_symmetric(logits_per_image, logits_per_text, teacher_boxes_logits) | |
loss_dict["loss_sym_box_label"] = sym_loss_box_label | |
# ---------------------------------------------------------------------------------------- | |
# Predict image-level classes (batch_size, num_patches, num_queries) | |
image_text_logits, pred_logits, part_logits = self.cls_head(image_feats, text_embeds, topk_idxs) | |
if self.weight_dict["loss_xclip"] > 0: | |
targets_cls = torch.tensor([target["targets_cls"] for target in targets]).unsqueeze(1).to(self.device) | |
if self.network_type == "classification": | |
one_hot = torch.zeros_like(pred_logits).scatter(1, targets_cls, 1).to(self.device) | |
cls_loss = self.ce_loss(pred_logits, one_hot) | |
loss_dict["loss_xclip"] = cls_loss | |
else: | |
# TODO: Need a linear classifier for this approach | |
# Compute symmetric loss for part-descriptor contrastive learning | |
logits_per_image = torch.softmax(image_text_logits, dim=0) | |
logits_per_text = torch.softmax(image_text_logits, dim=-1) | |
sym_loss = self.loss_symmetric(logits_per_image, logits_per_text, targets_cls) | |
loss_dict["loss_xclip"] = sym_loss | |
return pred_logits, part_logits, loss_dict | |
def loss_symmetric(self, text_logits: torch.Tensor, image_logits: torch.Tensor, targets: torch.Tensor, box_labels: torch.Tensor = None) -> torch.Tensor: | |
# text/image logits (batch_size*num_boxes, num_classes*num_descs): The logits that softmax over text descriptors or boxes | |
# targets (batch_size, 1): The ground truth label of box-text pair for classification OR | |
# targets (batch_size, all_boxes, num_parts): The ground truth label of box-text pair for box selection | |
# box_labels (batch_size, num_boxes), 0 for no box, 1 for box | |
assert text_logits.shape == image_logits.shape | |
# For image classification | |
if image_logits.shape != targets.shape: | |
batch_size = targets.shape[0] | |
# get the matching labels (bs * 12, num_classes * num_parts) | |
default_box_labels = torch.kron(torch.ones(batch_size, self.num_classes), torch.eye(self.num_parts)).to(self.device) | |
if box_labels is None: | |
box_labels = default_box_labels.clone() | |
else: | |
# (batch_size, num_boxes) -> (bs * num_boxes, num_classes * num_parts) | |
box_labels = box_labels.view(-1, 1) * default_box_labels | |
# Create one-hot encoding of targets; matching_labels shape: (bs * 12, num_classes * num_parts) | |
target_one_hot = torch.zeros(batch_size, self.num_classes).to(self.device).scatter(1, targets.view(-1, 1), 1) | |
target_one_hot = torch.kron(target_one_hot, torch.ones(self.num_parts, self.num_parts).to(self.device)) | |
matching_labels = target_one_hot * box_labels | |
else: | |
# For box selection: matching_labels shape: (bs, 576, num_parts) | |
values, indices = torch.max(targets, dim=1) | |
matching_labels = torch.zeros_like(targets).scatter(1, indices.unsqueeze(1), 1) | |
loss_i = F.binary_cross_entropy_with_logits(image_logits, matching_labels, reduction='mean') | |
loss_t = F.binary_cross_entropy_with_logits(text_logits, matching_labels, reduction='mean') | |
sym_loss = (loss_i + loss_t).mean() | |
return sym_loss | |
class DetrLoss(nn.Module): | |
""" | |
This class computes the losses for DetrForObjectDetection/DetrForSegmentation. The process happens in two steps: 1) | |
we compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair | |
of matched ground-truth / prediction (supervise class and box). | |
A note on the `num_classes` argument (copied from original repo in detr.py): "the naming of the `num_classes` | |
parameter of the criterion is somewhat misleading. It indeed corresponds to `max_obj_id` + 1, where `max_obj_id` is | |
the maximum id for a class in your dataset. For example, COCO has a `max_obj_id` of 90, so we pass `num_classes` to | |
be 91. As another example, for a dataset that has a single class with `id` 1, you should pass `num_classes` to be 2 | |
(`max_obj_id` + 1). For more details on this, check the following discussion | |
https://github.com/facebookresearch/detr/issues/108#issuecomment-650269223" | |
Args: | |
matcher (`DetrHungarianMatcher`): | |
Module able to compute a matching between targets and proposals. | |
num_parts (`int`): | |
Number of object categories, omitting the special no-object category. | |
eos_coef (`float`): | |
Relative classification weight applied to the no-object category. | |
losses (`List[str]`): | |
List of all the losses to be applied. See `get_loss` for a list of all available losses. | |
""" | |
def __init__(self, matcher, num_parts, eos_coef, losses): | |
super().__init__() | |
self.matcher = matcher | |
self.num_parts = num_parts | |
self.eos_coef = eos_coef | |
self.losses = losses | |
# empty_weight = torch.ones(self.num_parts + 1) | |
empty_weight = torch.ones(self.num_parts) | |
empty_weight[-1] = self.eos_coef | |
self.register_buffer("empty_weight", empty_weight) | |
# removed logging parameter, which was part of the original implementation | |
def loss_labels(self, outputs, targets, indices, num_boxes): | |
""" | |
Classification loss (NLL) targets dicts must contain the key "class_labels" containing a tensor of dim | |
[nb_target_boxes] | |
""" | |
if "logits" not in outputs: | |
raise KeyError("No logits were found in the outputs") | |
source_logits = outputs["logits"] | |
idx = self._get_source_permutation_idx(indices) | |
# target_classes_o = torch.cat([t["class_labels"][J] for t, (_, J) in zip(targets, indices)]) | |
# target_classes = torch.full(source_logits.shape[:2], self.num_parts, dtype=torch.int64, device=source_logits.device) | |
# target_classes[idx] = target_classes_o | |
source_logits = source_logits[idx].view(len(indices), -1, self.num_parts) | |
target_classes = torch.stack([t["class_labels"][J] for t, (_, J) in zip(targets, indices)], dim=0) | |
loss_ce = nn.functional.cross_entropy(source_logits.transpose(1, 2), target_classes, self.empty_weight) | |
losses = {"loss_ce": loss_ce} | |
return losses | |
def loss_cardinality(self, outputs, targets, indices, num_boxes): | |
""" | |
Compute the cardinality error, i.e. the absolute error in the number of predicted non-empty boxes. | |
This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients. | |
""" | |
logits = outputs["logits"] | |
device = logits.device | |
target_lengths = torch.as_tensor([len(v["class_labels"]) for v in targets], device=device) | |
# Count the number of predictions that are NOT "no-object" (which is the last class) | |
card_pred = (logits.argmax(-1) != logits.shape[-1] - 1).sum(1) | |
card_err = nn.functional.l1_loss(card_pred.float(), target_lengths.float()) | |
losses = {"cardinality_error": card_err} | |
return losses | |
def loss_boxes(self, outputs, targets, indices, num_boxes): | |
""" | |
Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss. | |
Targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]. The target boxes | |
are expected in format (center_x, center_y, w, h), normalized by the image size. | |
""" | |
if "pred_boxes" not in outputs: | |
raise KeyError("No predicted boxes found in outputs") | |
idx = self._get_source_permutation_idx(indices) | |
source_boxes = outputs["pred_boxes"][idx] | |
target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0) | |
losses = {} | |
loss_bbox = nn.functional.l1_loss(source_boxes, target_boxes, reduction="none") | |
losses["loss_bbox"] = loss_bbox.sum() / num_boxes | |
loss_giou = 1 - torch.diag(generalized_box_iou(center_to_corners_format(source_boxes), center_to_corners_format(target_boxes))) | |
losses["loss_giou"] = loss_giou.sum() / num_boxes | |
return losses | |
def loss_masks(self, outputs, targets, indices, num_boxes): | |
""" | |
Compute the losses related to the masks: the focal loss and the dice loss. | |
Targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]. | |
""" | |
if "pred_masks" not in outputs: | |
raise KeyError("No predicted masks found in outputs") | |
source_idx = self._get_source_permutation_idx(indices) | |
target_idx = self._get_target_permutation_idx(indices) | |
source_masks = outputs["pred_masks"] | |
source_masks = source_masks[source_idx] | |
masks = [t["masks"] for t in targets] | |
# TODO use valid to mask invalid areas due to padding in loss | |
target_masks, valid = nested_tensor_from_tensor_list(masks).decompose() | |
target_masks = target_masks.to(source_masks) | |
target_masks = target_masks[target_idx] | |
# upsample predictions to the target size | |
source_masks = nn.functional.interpolate( | |
source_masks[:, None], size=target_masks.shape[-2:], mode="bilinear", align_corners=False | |
) | |
source_masks = source_masks[:, 0].flatten(1) | |
target_masks = target_masks.flatten(1) | |
target_masks = target_masks.view(source_masks.shape) | |
losses = { | |
"loss_mask": sigmoid_focal_loss(source_masks, target_masks, num_boxes), | |
"loss_dice": dice_loss(source_masks, target_masks, num_boxes), | |
} | |
return losses | |
def _get_source_permutation_idx(self, indices): | |
# permute predictions following indices | |
batch_idx = torch.cat([torch.full_like(source, i) for i, (source, _) in enumerate(indices)]) | |
source_idx = torch.cat([source for (source, _) in indices]) | |
return batch_idx, source_idx | |
def _get_target_permutation_idx(self, indices): | |
# permute targets following indices | |
batch_idx = torch.cat([torch.full_like(target, i) for i, (_, target) in enumerate(indices)]) | |
target_idx = torch.cat([target for (_, target) in indices]) | |
return batch_idx, target_idx | |
def get_loss(self, loss, outputs, targets, indices, num_boxes): | |
loss_map = { | |
"labels": self.loss_labels, | |
"cardinality": self.loss_cardinality, | |
"boxes": self.loss_boxes, | |
"masks": self.loss_masks, | |
} | |
if loss not in loss_map: | |
raise ValueError(f"Loss {loss} not supported") | |
return loss_map[loss](outputs, targets, indices, num_boxes) | |
def forward(self, outputs, targets, indices): | |
""" | |
This performs the loss computation. | |
Args: | |
outputs (`dict`, *optional*): | |
Dictionary of tensors, see the output specification of the model for the format. | |
targets (`List[dict]`, *optional*): | |
List of dicts, such that `len(targets) == batch_size`. The expected keys in each dict depends on the | |
losses applied, see each loss' doc. | |
""" | |
outputs_without_aux = {k: v for k, v in outputs.items() if k != "auxiliary_outputs"} | |
# ThangPM: Do NOT use bipartite matching --> Use the boxes selected by argmax for computing symmetric loss | |
# Retrieve the matching between the outputs of the last layer and the targets | |
# indices = self.matcher(outputs_without_aux, targets) | |
# Compute the average number of target boxes across all nodes, for normalization purposes | |
num_boxes = sum(len(t["class_labels"]) for t in targets) | |
num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device) | |
# (Niels): comment out function below, distributed training to be added | |
# if is_dist_avail_and_initialized(): | |
# torch.distributed.all_reduce(num_boxes) | |
# (Niels) in original implementation, num_boxes is divided by get_world_size() | |
num_boxes = torch.clamp(num_boxes, min=1).item() | |
# Compute all the requested losses | |
losses = {} | |
for loss in self.losses: | |
losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes)) | |
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer. | |
if "auxiliary_outputs" in outputs: | |
for i, auxiliary_outputs in enumerate(outputs["auxiliary_outputs"]): | |
# indices = self.matcher(auxiliary_outputs, targets) | |
for loss in self.losses: | |
if loss == "masks": | |
# Intermediate masks losses are too costly to compute, we ignore them. | |
continue | |
l_dict = self.get_loss(loss, auxiliary_outputs, targets, indices, num_boxes) | |
l_dict = {k + f"_{i}": v for k, v in l_dict.items()} | |
losses.update(l_dict) | |
return losses |