Spaces:
Running
on
Zero
Running
on
Zero
load model inside gr.Block
Browse files
app.py
CHANGED
@@ -1,16 +1,10 @@
|
|
1 |
import os
|
2 |
-
import gradio as gr
|
3 |
-
print(f"Gradio version {gr.__version__}")
|
4 |
-
# if gr.__version__ != '4.28.2':
|
5 |
-
# os.system("pip uninstall -y gradio")
|
6 |
-
# os.system("pip install gradio==4.28.2")
|
7 |
-
# print(f"Gradio version: {gr.__version__}")
|
8 |
-
|
9 |
import io
|
10 |
|
11 |
import torch
|
12 |
import json
|
13 |
import base64
|
|
|
14 |
import numpy as np
|
15 |
from pathlib import Path
|
16 |
from PIL import Image
|
@@ -20,7 +14,12 @@ from utils.load_model import load_xclip
|
|
20 |
from utils.predict import xclip_pred
|
21 |
|
22 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
-
XCLIP, OWLVIT_PRECESSOR =
|
|
|
|
|
|
|
|
|
|
|
24 |
XCLIP_DESC_PATH = "data/jsons/bs_cub_desc.json"
|
25 |
XCLIP_DESC = json.load(open(XCLIP_DESC_PATH, "r"))
|
26 |
PREPROCESS = lambda x: OWLVIT_PRECESSOR(images=x, return_tensors='pt')
|
@@ -383,6 +382,7 @@ custom_css = """
|
|
383 |
|
384 |
# Define the Gradio interface
|
385 |
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css, title="PEEB") as demo:
|
|
|
386 |
current_image = gr.State("")
|
387 |
current_predicted_class = gr.State("")
|
388 |
gt_class = gr.State("")
|
|
|
1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import io
|
3 |
|
4 |
import torch
|
5 |
import json
|
6 |
import base64
|
7 |
+
import gradio as gr
|
8 |
import numpy as np
|
9 |
from pathlib import Path
|
10 |
from PIL import Image
|
|
|
14 |
from utils.predict import xclip_pred
|
15 |
|
16 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
+
XCLIP, OWLVIT_PRECESSOR = None, None
|
18 |
+
def initialize_model():
|
19 |
+
global XCLIP, OWLVIT_PRECESSOR
|
20 |
+
if XCLIP is None or OWLVIT_PRECESSOR is None:
|
21 |
+
XCLIP, OWLVIT_PRECESSOR = load_xclip(DEVICE)
|
22 |
+
|
23 |
XCLIP_DESC_PATH = "data/jsons/bs_cub_desc.json"
|
24 |
XCLIP_DESC = json.load(open(XCLIP_DESC_PATH, "r"))
|
25 |
PREPROCESS = lambda x: OWLVIT_PRECESSOR(images=x, return_tensors='pt')
|
|
|
382 |
|
383 |
# Define the Gradio interface
|
384 |
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css, title="PEEB") as demo:
|
385 |
+
initialize_model()
|
386 |
current_image = gr.State("")
|
387 |
current_predicted_class = gr.State("")
|
388 |
gt_class = gr.State("")
|