File size: 11,804 Bytes
5657307
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import json
import os
import shutil
import subprocess
import tempfile
import unittest

import numpy as np
import torch
import transformers
from datasets import load_dataset
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, Trainer, TrainingArguments, pipeline

from evaluate import evaluator, load

from .utils import slow


class TestEvaluatorTrainerParity(unittest.TestCase):
    def setUp(self):
        self.dir_path = tempfile.mkdtemp("evaluator_trainer_parity_test")

        transformers_version = transformers.__version__
        branch = ""
        if not transformers_version.endswith(".dev0"):
            branch = f"--branch v{transformers_version}"
        subprocess.run(
            f"git clone --depth 3 --filter=blob:none --sparse {branch} https://github.com/huggingface/transformers",
            shell=True,
            cwd=self.dir_path,
        )

    def tearDown(self):
        shutil.rmtree(self.dir_path, ignore_errors=True)

    def test_text_classification_parity(self):
        model_name = "philschmid/tiny-bert-sst2-distilled"

        subprocess.run(
            "git sparse-checkout set examples/pytorch/text-classification",
            shell=True,
            cwd=os.path.join(self.dir_path, "transformers"),
        )

        subprocess.run(
            f"python examples/pytorch/text-classification/run_glue.py"
            f" --model_name_or_path {model_name}"
            f" --task_name sst2"
            f" --do_eval"
            f" --max_seq_length 9999999999"  # rely on tokenizer.model_max_length for max_length
            f" --output_dir {os.path.join(self.dir_path, 'textclassification_sst2_transformers')}"
            f" --max_eval_samples 80",
            shell=True,
            cwd=os.path.join(self.dir_path, "transformers"),
        )

        with open(
            f"{os.path.join(self.dir_path, 'textclassification_sst2_transformers', 'eval_results.json')}", "r"
        ) as f:
            transformers_results = json.load(f)

        eval_dataset = load_dataset("glue", "sst2", split="validation[:80]")

        pipe = pipeline(task="text-classification", model=model_name, tokenizer=model_name)

        task_evaluator = evaluator(task="text-classification")
        evaluator_results = task_evaluator.compute(
            model_or_pipeline=pipe,
            data=eval_dataset,
            metric="accuracy",
            input_column="sentence",
            label_column="label",
            label_mapping={"negative": 0, "positive": 1},
            strategy="simple",
        )

        self.assertEqual(transformers_results["eval_accuracy"], evaluator_results["accuracy"])

    @slow
    def test_text_classification_parity_two_columns(self):
        model_name = "prajjwal1/bert-tiny-mnli"
        max_eval_samples = 150

        subprocess.run(
            "git sparse-checkout set examples/pytorch/text-classification",
            shell=True,
            cwd=os.path.join(self.dir_path, "transformers"),
        )

        subprocess.run(
            f"python examples/pytorch/text-classification/run_glue.py"
            f" --model_name_or_path {model_name}"
            f" --task_name mnli"
            f" --do_eval"
            f" --max_seq_length 256"
            f" --output_dir {os.path.join(self.dir_path, 'textclassification_mnli_transformers')}"
            f" --max_eval_samples {max_eval_samples}",
            shell=True,
            cwd=os.path.join(self.dir_path, "transformers"),
        )

        with open(
            f"{os.path.join(self.dir_path, 'textclassification_mnli_transformers', 'eval_results.json')}", "r"
        ) as f:
            transformers_results = json.load(f)

        eval_dataset = load_dataset("glue", "mnli", split=f"validation_matched[:{max_eval_samples}]")

        pipe = pipeline(task="text-classification", model=model_name, tokenizer=model_name, max_length=256)

        task_evaluator = evaluator(task="text-classification")
        evaluator_results = task_evaluator.compute(
            model_or_pipeline=pipe,
            data=eval_dataset,
            metric="accuracy",
            input_column="premise",
            second_input_column="hypothesis",
            label_column="label",
            label_mapping={"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2},
        )

        self.assertEqual(transformers_results["eval_accuracy"], evaluator_results["accuracy"])

    def test_image_classification_parity(self):
        # we can not compare to the Pytorch transformers example, that uses custom preprocessing on the images
        model_name = "douwekiela/resnet-18-finetuned-dogfood"
        dataset_name = "beans"
        max_eval_samples = 120

        raw_dataset = load_dataset(dataset_name, split="validation")
        eval_dataset = raw_dataset.select(range(max_eval_samples))

        feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
        model = AutoModelForImageClassification.from_pretrained(model_name)

        def collate_fn(examples):
            pixel_values = torch.stack(
                [torch.tensor(feature_extractor(example["image"])["pixel_values"][0]) for example in examples]
            )
            labels = torch.tensor([example["labels"] for example in examples])
            return {"pixel_values": pixel_values, "labels": labels}

        metric = load("accuracy")
        trainer = Trainer(
            model=model,
            args=TrainingArguments(
                output_dir=os.path.join(self.dir_path, "imageclassification_beans_transformers"),
                remove_unused_columns=False,
            ),
            train_dataset=None,
            eval_dataset=eval_dataset,
            compute_metrics=lambda p: metric.compute(
                predictions=np.argmax(p.predictions, axis=1), references=p.label_ids
            ),
            tokenizer=None,
            data_collator=collate_fn,
        )

        metrics = trainer.evaluate()
        trainer.save_metrics("eval", metrics)

        with open(
            f"{os.path.join(self.dir_path, 'imageclassification_beans_transformers', 'eval_results.json')}", "r"
        ) as f:
            transformers_results = json.load(f)

        pipe = pipeline(task="image-classification", model=model_name, feature_extractor=model_name)

        task_evaluator = evaluator(task="image-classification")
        evaluator_results = task_evaluator.compute(
            model_or_pipeline=pipe,
            data=eval_dataset,
            metric="accuracy",
            input_column="image",
            label_column="labels",
            label_mapping=model.config.label2id,
            strategy="simple",
        )

        self.assertEqual(transformers_results["eval_accuracy"], evaluator_results["accuracy"])

    def test_question_answering_parity(self):
        model_name_v1 = "anas-awadalla/bert-tiny-finetuned-squad"
        model_name_v2 = "mrm8488/bert-tiny-finetuned-squadv2"

        subprocess.run(
            "git sparse-checkout set examples/pytorch/question-answering",
            shell=True,
            cwd=os.path.join(self.dir_path, "transformers"),
        )

        # test squad_v1-like dataset
        subprocess.run(
            f"python examples/pytorch/question-answering/run_qa.py"
            f" --model_name_or_path {model_name_v1}"
            f" --dataset_name squad"
            f" --do_eval"
            f" --output_dir {os.path.join(self.dir_path, 'questionanswering_squad_transformers')}"
            f" --max_eval_samples 100"
            f" --max_seq_length 384",
            shell=True,
            cwd=os.path.join(self.dir_path, "transformers"),
        )

        with open(
            f"{os.path.join(self.dir_path, 'questionanswering_squad_transformers', 'eval_results.json')}", "r"
        ) as f:
            transformers_results = json.load(f)

        eval_dataset = load_dataset("squad", split="validation[:100]")

        pipe = pipeline(
            task="question-answering",
            model=model_name_v1,
            tokenizer=model_name_v1,
            max_answer_len=30,
            padding="max_length",
        )

        task_evaluator = evaluator(task="question-answering")
        evaluator_results = task_evaluator.compute(
            model_or_pipeline=pipe,
            data=eval_dataset,
            metric="squad",
            strategy="simple",
        )

        self.assertEqual(transformers_results["eval_f1"], evaluator_results["f1"])
        self.assertEqual(transformers_results["eval_exact_match"], evaluator_results["exact_match"])

        # test squad_v2-like dataset
        subprocess.run(
            f"python examples/pytorch/question-answering/run_qa.py"
            f" --model_name_or_path {model_name_v2}"
            f" --dataset_name squad_v2"
            f" --version_2_with_negative"
            f" --do_eval"
            f" --output_dir {os.path.join(self.dir_path, 'questionanswering_squadv2_transformers')}"
            f" --max_eval_samples 100"
            f" --max_seq_length 384",
            shell=True,
            cwd=os.path.join(self.dir_path, "transformers"),
        )

        with open(
            f"{os.path.join(self.dir_path, 'questionanswering_squadv2_transformers', 'eval_results.json')}", "r"
        ) as f:
            transformers_results = json.load(f)

        eval_dataset = load_dataset("squad_v2", split="validation[:100]")

        pipe = pipeline(
            task="question-answering",
            model=model_name_v2,
            tokenizer=model_name_v2,
            max_answer_len=30,
        )

        task_evaluator = evaluator(task="question-answering")
        evaluator_results = task_evaluator.compute(
            model_or_pipeline=pipe,
            data=eval_dataset,
            metric="squad_v2",
            strategy="simple",
            squad_v2_format=True,
        )

        self.assertEqual(transformers_results["eval_f1"], evaluator_results["f1"])
        self.assertEqual(transformers_results["eval_HasAns_f1"], evaluator_results["HasAns_f1"])
        self.assertEqual(transformers_results["eval_NoAns_f1"], evaluator_results["NoAns_f1"])

    def test_token_classification_parity(self):
        model_name = "hf-internal-testing/tiny-bert-for-token-classification"
        n_samples = 500

        subprocess.run(
            "git sparse-checkout set examples/pytorch/token-classification",
            shell=True,
            cwd=os.path.join(self.dir_path, "transformers"),
        )

        subprocess.run(
            f"python examples/pytorch/token-classification/run_ner.py"
            f" --model_name_or_path {model_name}"
            f" --dataset_name conll2003"
            f" --do_eval"
            f" --output_dir {os.path.join(self.dir_path, 'tokenclassification_conll2003_transformers')}"
            f" --max_eval_samples {n_samples}",
            shell=True,
            cwd=os.path.join(self.dir_path, "transformers"),
        )

        with open(
            os.path.join(self.dir_path, "tokenclassification_conll2003_transformers", "eval_results.json"), "r"
        ) as f:
            transformers_results = json.load(f)

        eval_dataset = load_dataset("conll2003", split=f"validation[:{n_samples}]")

        pipe = pipeline(task="token-classification", model=model_name)

        e = evaluator(task="token-classification")
        evaluator_results = e.compute(
            model_or_pipeline=pipe,
            data=eval_dataset,
            metric="seqeval",
            input_column="tokens",
            label_column="ner_tags",
            strategy="simple",
        )

        self.assertEqual(transformers_results["eval_accuracy"], evaluator_results["overall_accuracy"])
        self.assertEqual(transformers_results["eval_f1"], evaluator_results["overall_f1"])