File size: 2,904 Bytes
5657307
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
<p align="center">
    <br>
    <img src="https://huggingface.co/datasets/evaluate/media/resolve/main/evaluate-banner.png" width="400"/>
    <br>
</p>

# πŸ€— Evaluate

A library for easily evaluating machine learning models and datasets.

With a single line of code, you get access to dozens of evaluation methods for different domains (NLP, Computer Vision, Reinforcement Learning, and more!). Be it on your local machine or in a distributed training setup, you can evaluate your models in a consistent and reproducible way! 

Visit the πŸ€— Evaluate [organization](https://huggingface.co/evaluate-metric) for a full list of available metrics. Each metric has a dedicated Space with an interactive demo for how to use the metric, and a documentation card detailing the metrics limitations and usage.

<div class="mt-10">
  <div class="w-full flex flex-col space-y-4 md:space-y-0 md:grid md:grid-cols-2 md:gap-y-4 md:gap-x-5">
    <a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./installation"
      ><div class="w-full text-center bg-gradient-to-br from-blue-400 to-blue-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Tutorials</div>
      <p class="text-gray-700">Learn the basics and become familiar with loading, computing, and saving with πŸ€— Evaluate. Start here if you are using πŸ€— Evaluate for the first time!</p>
    </a>
    <a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./choosing_a_metric"
      ><div class="w-full text-center bg-gradient-to-br from-indigo-400 to-indigo-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">How-to guides</div>
      <p class="text-gray-700">Practical guides to help you achieve a specific goal. Take a look at these guides to learn how to use πŸ€— Evaluate to solve real-world problems.</p>
    </a>
    <a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./types_of_evaluations"
      ><div class="w-full text-center bg-gradient-to-br from-pink-400 to-pink-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Conceptual guides</div>
      <p class="text-gray-700">High-level explanations for building a better understanding of important topics such as considerations going into evaluating a model or dataset and the difference between metrics, measurements, and comparisons.</p>
   </a>
    <a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./package_reference/main_classes"
      ><div class="w-full text-center bg-gradient-to-br from-purple-400 to-purple-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Reference</div>
      <p class="text-gray-700">Technical descriptions of how πŸ€— Evaluate classes and methods work.</p>
    </a>
  </div>
</div>