Spaces:
Sleeping
Sleeping
File size: 7,950 Bytes
5657307 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
# Copyright 2020 The HuggingFace Evaluate Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" BERTScore metric. """
import functools
from contextlib import contextmanager
import bert_score
import datasets
from packaging import version
import evaluate
@contextmanager
def filter_logging_context():
def filter_log(record):
return False if "This IS expected if you are initializing" in record.msg else True
logger = datasets.utils.logging.get_logger("transformers.modeling_utils")
logger.addFilter(filter_log)
try:
yield
finally:
logger.removeFilter(filter_log)
_CITATION = """\
@inproceedings{bert-score,
title={BERTScore: Evaluating Text Generation with BERT},
author={Tianyi Zhang* and Varsha Kishore* and Felix Wu* and Kilian Q. Weinberger and Yoav Artzi},
booktitle={International Conference on Learning Representations},
year={2020},
url={https://openreview.net/forum?id=SkeHuCVFDr}
}
"""
_DESCRIPTION = """\
BERTScore leverages the pre-trained contextual embeddings from BERT and matches words in candidate and reference
sentences by cosine similarity.
It has been shown to correlate with human judgment on sentence-level and system-level evaluation.
Moreover, BERTScore computes precision, recall, and F1 measure, which can be useful for evaluating different language
generation tasks.
See the project's README at https://github.com/Tiiiger/bert_score#readme for more information.
"""
_KWARGS_DESCRIPTION = """
BERTScore Metrics with the hashcode from a source against one or more references.
Args:
predictions (list of str): Prediction/candidate sentences.
references (list of str or list of list of str): Reference sentences.
lang (str): Language of the sentences; required (e.g. 'en').
model_type (str): Bert specification, default using the suggested
model for the target language; has to specify at least one of
`model_type` or `lang`.
num_layers (int): The layer of representation to use,
default using the number of layers tuned on WMT16 correlation data.
verbose (bool): Turn on intermediate status update.
idf (bool or dict): Use idf weighting; can also be a precomputed idf_dict.
device (str): On which the contextual embedding model will be allocated on.
If this argument is None, the model lives on cuda:0 if cuda is available.
nthreads (int): Number of threads.
batch_size (int): Bert score processing batch size,
at least one of `model_type` or `lang`. `lang` needs to be
specified when `rescale_with_baseline` is True.
rescale_with_baseline (bool): Rescale bertscore with pre-computed baseline.
baseline_path (str): Customized baseline file.
use_fast_tokenizer (bool): `use_fast` parameter passed to HF tokenizer. New in version 0.3.10.
Returns:
precision: Precision.
recall: Recall.
f1: F1 score.
hashcode: Hashcode of the library.
Examples:
>>> predictions = ["hello there", "general kenobi"]
>>> references = ["hello there", "general kenobi"]
>>> bertscore = evaluate.load("bertscore")
>>> results = bertscore.compute(predictions=predictions, references=references, lang="en")
>>> print([round(v, 2) for v in results["f1"]])
[1.0, 1.0]
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class BERTScore(evaluate.Metric):
def _info(self):
return evaluate.MetricInfo(
description=_DESCRIPTION,
citation=_CITATION,
homepage="https://github.com/Tiiiger/bert_score",
inputs_description=_KWARGS_DESCRIPTION,
features=[
datasets.Features(
{
"predictions": datasets.Value("string", id="sequence"),
"references": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"),
}
),
datasets.Features(
{
"predictions": datasets.Value("string", id="sequence"),
"references": datasets.Value("string", id="sequence"),
}
),
],
codebase_urls=["https://github.com/Tiiiger/bert_score"],
reference_urls=[
"https://github.com/Tiiiger/bert_score",
"https://arxiv.org/abs/1904.09675",
],
)
def _compute(
self,
predictions,
references,
lang=None,
model_type=None,
num_layers=None,
verbose=False,
idf=False,
device=None,
batch_size=64,
nthreads=4,
all_layers=False,
rescale_with_baseline=False,
baseline_path=None,
use_fast_tokenizer=False,
):
if isinstance(references[0], str):
references = [[ref] for ref in references]
if idf:
idf_sents = [r for ref in references for r in ref]
else:
idf_sents = None
get_hash = bert_score.utils.get_hash
scorer = bert_score.BERTScorer
if version.parse(bert_score.__version__) >= version.parse("0.3.10"):
get_hash = functools.partial(get_hash, use_fast_tokenizer=use_fast_tokenizer)
scorer = functools.partial(scorer, use_fast_tokenizer=use_fast_tokenizer)
elif use_fast_tokenizer:
raise ImportWarning(
"To use a fast tokenizer, the module `bert-score>=0.3.10` is required, and the current version of "
"`bert-score` doesn't match this condition.\n"
'You can install it with `pip install "bert-score>=0.3.10"`.'
)
if model_type is None:
if lang is None:
raise ValueError(
"Either 'lang' (e.g. 'en') or 'model_type' (e.g. 'microsoft/deberta-xlarge-mnli')"
" must be specified"
)
model_type = bert_score.utils.lang2model[lang.lower()]
if num_layers is None:
num_layers = bert_score.utils.model2layers[model_type]
hashcode = get_hash(
model=model_type,
num_layers=num_layers,
idf=idf,
rescale_with_baseline=rescale_with_baseline,
use_custom_baseline=baseline_path is not None,
)
with filter_logging_context():
if not hasattr(self, "cached_bertscorer") or self.cached_bertscorer.hash != hashcode:
self.cached_bertscorer = scorer(
model_type=model_type,
num_layers=num_layers,
batch_size=batch_size,
nthreads=nthreads,
all_layers=all_layers,
idf=idf,
idf_sents=idf_sents,
device=device,
lang=lang,
rescale_with_baseline=rescale_with_baseline,
baseline_path=baseline_path,
)
(P, R, F) = self.cached_bertscorer.score(
cands=predictions,
refs=references,
verbose=verbose,
batch_size=batch_size,
)
output_dict = {
"precision": P.tolist(),
"recall": R.tolist(),
"f1": F.tolist(),
"hashcode": hashcode,
}
return output_dict
|