Spaces:
Sleeping
Sleeping
File size: 5,504 Bytes
5657307 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MASE - Mean Absolute Scaled Error Metric"""
import datasets
import numpy as np
from sklearn.metrics import mean_absolute_error
import evaluate
_CITATION = """\
@article{HYNDMAN2006679,
title = {Another look at measures of forecast accuracy},
journal = {International Journal of Forecasting},
volume = {22},
number = {4},
pages = {679--688},
year = {2006},
issn = {0169-2070},
doi = {https://doi.org/10.1016/j.ijforecast.2006.03.001},
url = {https://www.sciencedirect.com/science/article/pii/S0169207006000239},
author = {Rob J. Hyndman and Anne B. Koehler},
}
"""
_DESCRIPTION = """\
Mean Absolute Scaled Error (MASE) is the mean absolute error of the forecast values, divided by the mean absolute error of the in-sample one-step naive forecast.
"""
_KWARGS_DESCRIPTION = """
Args:
predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
references: array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
training: array-like of shape (n_train_samples,) or (n_train_samples, n_outputs)
In sample training data for naive forecast.
periodicity: int, default=1
Seasonal periodicity of training data.
sample_weight: array-like of shape (n_samples,), default=None
Sample weights.
multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"
Defines aggregating of multiple output values. Array-like value defines weights used to average errors.
"raw_values" : Returns a full set of errors in case of multioutput input.
"uniform_average" : Errors of all outputs are averaged with uniform weight.
Returns:
mase : mean absolute scaled error.
If multioutput is "raw_values", then mean absolute percentage error is returned for each output separately. If multioutput is "uniform_average" or an ndarray of weights, then the weighted average of all output errors is returned.
MASE output is non-negative floating point. The best value is 0.0.
Examples:
>>> mase_metric = evaluate.load("mase")
>>> predictions = [2.5, 0.0, 2, 8, 1.25]
>>> references = [3, -0.5, 2, 7, 2]
>>> training = [5, 0.5, 4, 6, 3, 5, 2]
>>> results = mase_metric.compute(predictions=predictions, references=references, training=training)
>>> print(results)
{'mase': 0.18333333333333335}
If you're using multi-dimensional lists, then set the config as follows :
>>> mase_metric = evaluate.load("mase", "multilist")
>>> predictions = [[0, 2], [-1, 2], [8, -5]]
>>> references = [[0.5, 1], [-1, 1], [7, -6]]
>>> training = [[0.5, 1], [-1, 1], [7, -6]]
>>> results = mase_metric.compute(predictions=predictions, references=references, training=training)
>>> print(results)
{'mase': 0.18181818181818182}
>>> results = mase_metric.compute(predictions=predictions, references=references, training=training, multioutput='raw_values')
>>> print(results)
{'mase': array([0.10526316, 0.28571429])}
>>> results = mase_metric.compute(predictions=predictions, references=references, training=training, multioutput=[0.3, 0.7])
>>> print(results)
{'mase': 0.21935483870967742}
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class Mase(evaluate.Metric):
def _info(self):
return evaluate.MetricInfo(
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=datasets.Features(self._get_feature_types()),
reference_urls=["https://otexts.com/fpp3/accuracy.html#scaled-errors"],
)
def _get_feature_types(self):
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("float")),
"references": datasets.Sequence(datasets.Value("float")),
}
else:
return {
"predictions": datasets.Value("float"),
"references": datasets.Value("float"),
}
def _compute(
self,
predictions,
references,
training,
periodicity=1,
sample_weight=None,
multioutput="uniform_average",
):
y_pred_naive = training[:-periodicity]
mae_naive = mean_absolute_error(training[periodicity:], y_pred_naive, multioutput=multioutput)
mae_score = mean_absolute_error(
references,
predictions,
sample_weight=sample_weight,
multioutput=multioutput,
)
epsilon = np.finfo(np.float64).eps
mase_score = mae_score / np.maximum(mae_naive, epsilon)
return {"mase": mase_score}
|