XS-dev
trial
5657307
# Copyright 2020 The HuggingFace Evaluate Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" IndicGLUE benchmark metric. """
import datasets
import numpy as np
from scipy.spatial.distance import cdist
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import f1_score
import evaluate
_CITATION = """\
@inproceedings{kakwani2020indicnlpsuite,
title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},
author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},
year={2020},
booktitle={Findings of EMNLP},
}
"""
_DESCRIPTION = """\
IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide
variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.
"""
_KWARGS_DESCRIPTION = """
Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset.
Args:
predictions: list of predictions to score (as int64),
except for 'cvit-mkb-clsr' where each prediction is a vector (of float32).
references: list of ground truth labels corresponding to the predictions (as int64),
except for 'cvit-mkb-clsr' where each reference is a vector (of float32).
Returns: depending on the IndicGLUE subset, one or several of:
"accuracy": Accuracy
"f1": F1 score
"precision": Precision@10
Examples:
>>> indic_glue_metric = evaluate.load('indic_glue', 'wnli') # 'wnli' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"]
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = indic_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'accuracy': 1.0}
>>> indic_glue_metric = evaluate.load('indic_glue', 'wiki-ner')
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = indic_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'accuracy': 1.0, 'f1': 1.0}
>>> indic_glue_metric = evaluate.load('indic_glue', 'cvit-mkb-clsr')
>>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]
>>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]
>>> results = indic_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'precision@10': 1.0}
"""
def simple_accuracy(preds, labels):
return float((preds == labels).mean())
def acc_and_f1(preds, labels):
acc = simple_accuracy(preds, labels)
f1 = float(f1_score(y_true=labels, y_pred=preds))
return {
"accuracy": acc,
"f1": f1,
}
def precision_at_10(en_sentvecs, in_sentvecs):
en_sentvecs = np.array(en_sentvecs)
in_sentvecs = np.array(in_sentvecs)
n = en_sentvecs.shape[0]
# mean centering
en_sentvecs = en_sentvecs - np.mean(en_sentvecs, axis=0)
in_sentvecs = in_sentvecs - np.mean(in_sentvecs, axis=0)
sim = cdist(en_sentvecs, in_sentvecs, "cosine")
actual = np.array(range(n))
preds = sim.argsort(axis=1)[:, :10]
matches = np.any(preds == actual[:, None], axis=1)
return float(matches.mean())
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class IndicGlue(evaluate.Metric):
def _info(self):
if self.config_name not in [
"wnli",
"copa",
"sna",
"csqa",
"wstp",
"inltkh",
"bbca",
"cvit-mkb-clsr",
"iitp-mr",
"iitp-pr",
"actsa-sc",
"md",
"wiki-ner",
]:
raise KeyError(
"You should supply a configuration name selected in "
'["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", '
'"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", '
'"wiki-ner"]'
)
return evaluate.MetricInfo(
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=datasets.Features(
{
"predictions": datasets.Value("int64")
if self.config_name != "cvit-mkb-clsr"
else datasets.Sequence(datasets.Value("float32")),
"references": datasets.Value("int64")
if self.config_name != "cvit-mkb-clsr"
else datasets.Sequence(datasets.Value("float32")),
}
),
codebase_urls=[],
reference_urls=[],
format="numpy" if self.config_name != "cvit-mkb-clsr" else None,
)
def _compute(self, predictions, references):
if self.config_name == "cvit-mkb-clsr":
return {"precision@10": precision_at_10(predictions, references)}
elif self.config_name in ["wiki-ner"]:
return acc_and_f1(predictions, references)
elif self.config_name in [
"wnli",
"copa",
"sna",
"csqa",
"wstp",
"inltkh",
"bbca",
"iitp-mr",
"iitp-pr",
"actsa-sc",
"md",
]:
return {"accuracy": simple_accuracy(predictions, references)}
else:
raise KeyError(
"You should supply a configuration name selected in "
'["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", '
'"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", '
'"wiki-ner"]'
)