File size: 33,472 Bytes
bd67cfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
import os
import time
from abc import ABC, abstractmethod
from collections import Counter
from typing import Union, Dict, Tuple, Generator

import numpy as np
from tqdm import tqdm
from scipy.linalg import pinv
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans, BisectingKMeans
from sklearn.metrics import mean_squared_error,  accuracy_score, normalized_mutual_info_score

class BasicNMF(ABC):
    name = 'Basic'
    """
    A basic framework for Non-negative Matrix Factorization (NMF) algorithms.
    """
    def __init__(self) -> None:
        """
        Initialize the basic NMF algorithm.
        """
        self.loss_list = []

    def __PCA(self, X: np.ndarray, n_components: int) -> np.ndarray:
        """
        Principal Component Analysis (PCA) for dimensionality reduction.

        Parameters:
            X (numpy.ndarray): Input dataset of shape (n_samples, n_features).
            n_components (int): Number of principal components to retain.

        Returns:
            transformed_data (numpy.ndarray): Dataset transformed into principal component space.
        """
        if n_components > X.shape[1]:
            raise ValueError("n_components must be less than or equal to the number of features")

        # Center the data
        X_centered = X - np.mean(X, axis=0)
        # Calculate the covariance matrix and its eigenvalues and eigenvectors
        cov_mat = np.cov(X_centered, rowvar=False)
        eigenvalues, eigenvectors = np.linalg.eigh(cov_mat)
        # Sort the eigenvalues and eigenvectors in descending order
        sorted_indices = eigenvalues.argsort()[::-1]
        eigenvectors = eigenvectors[:, sorted_indices]
        # Projection matrix using the first n_components eigenvectors
        projection_matrix = eigenvectors[:, :n_components]
        # Project the data onto the new feature space
        transformed_data = np.dot(X_centered, projection_matrix)
        return transformed_data

    def __FastICA(self, X: np.ndarray, max_iter: int=200, random_state: Union[int, np.random.RandomState, None]=None) -> np.ndarray:
        """
        Implementation of FastICA algorithm to separate the independent sources 
        from mixed signals in the input data.
        
        Parameters:
        X (numpy.ndarray): Input dataset of shape (n_samples, n_features).
        max_iter (int, optional): The maximum number of iterations for the convergence of the estimation. Default is 200.
                                    
        Return:
        S (numpy.ndarray): Matrix of shape (n_samples, n_features) representing the estimated independent sources.
        """
        # Set the random state
        rng = np.random.RandomState(random_state)
        # Center the data by removing the mean
        X = X - np.mean(X, axis=1, keepdims=True)
        n = X.shape[0]
        # Compute the independent components iteratively
        W = np.zeros((n, n))
        for i in range(n):
            w = rng.rand(n)
            for j in range(max_iter):  # max iterations for convergence
                w_new = (X * np.dot(w, X)).mean(axis=1) - 2 * w
                w_new /= np.sqrt((w_new ** 2).sum())
                # Convergence check based on the weight vector's direction
                if np.abs(np.abs((w_new * w).sum()) - 1) < 1e-04:
                    break
                w = w_new
            W[i, :] = w
            X -= np.outer(w, np.dot(w, X))
        # Compute the estimated independent sources
        S = np.dot(W, X)
        return S
    
    def __NICA(self, X: np.ndarray, r: int, random_state: Union[int, np.random.RandomState, None]=None) -> Tuple[np.ndarray, np.ndarray]:
        """
        Implementation of a non-negative Independent Component Analysis (NICA). 
        The process involves obtaining a non-negative basic matrix and a 
        non-negative coefficient matrix from the input data.

        Parameters:
        - X (numpy.ndarray): The input data matrix of shape (n_features, n_samples) 
                            where n_samples is the number of samples, and n_features 
                            is the number of features.
        - r (int): The number of components to be retained after applying PCA.

        Returns:
        - W_0 (numpy.ndarray): The non-negative dictionary matrix.
        - H_0 (numpy.ndarray): The non-negative representation matrix.
        """
        # Set A as a pseudoinverse of X
        A = pinv(X.T)
        # Apply PCA on the matrix A to generate the basic matrix W
        W = self.__PCA(A, n_components=r)
        # Whiten the basic matrix W obtained above by using the eigenvalue decomposition of the covariance matrix of W.
        eigenvalues, eigenvectors = np.linalg.eigh(np.cov(W, rowvar=False))
        # Preallocate memory for whitened matrix
        W_whitened = np.empty_like(W)
        np.dot(W, eigenvectors, out=W_whitened)
        W_whitened /= np.sqrt(eigenvalues + 1e-5)
        # Implement ICA algorithm on the whitened matrix W and obtain the independent basic matrix W_0
        # Assuming FastICA() returns the transformed matrix
        W_0 = self.__FastICA(W_whitened, random_state=random_state)
        # Preallocate memory for H_0 and calculate it
        H_0 = np.empty((W_0.shape[1], X.shape[1]))
        np.dot(W_0.T, X, out=H_0)
        # Take the absolute value in-place
        np.abs(W_0, out=W_0)
        np.abs(H_0, out=H_0)
        return W_0, H_0
    
    def Kmeans(self, X: np.ndarray, n_components: int, random_state: Union[int, np.random.RandomState, None]=None) -> Tuple[np.ndarray, np.ndarray]:
        """
        Initialize D and R matrices using K-means algorithm.

        Parameters:
        - X (numpy.ndarray): Input data matrix of shape (n_features, n_samples).
        - n_components (int): The number of components for matrix factorization.
        - random_state (int, np.random.RandomState, None): Random state for reproducibility.
        """
        # Intialize
        kmeans = KMeans(n_clusters=n_components, n_init='auto', random_state=random_state)
        kmeans.fit(X.T)
        D = kmeans.cluster_centers_.T
        labels = kmeans.labels_
        G = np.zeros(((len(labels)), n_components))
        for i, label in enumerate(labels):
            G[i, label] = 1
        G = G / np.sqrt(np.sum(G, axis=0, keepdims=True))
        G += 0.2
        R = G.T
        return D, R
    
    def matrix_init(self, X: np.ndarray, n_components: int, 
                     random_state: Union[int, np.random.RandomState, None]=None) -> Tuple[np.ndarray, np.ndarray]:
        """
        Initialize D and R matrices using NICA algorithm.

        Parameters:
        - X (numpy.ndarray): Input data matrix of shape (n_features, n_samples).
        - n_components (int): The number of components for matrix factorization.
        - random_state (int, np.random.RandomState, None): Random state for reproducibility.
        
        Returns:
        - D (numpy.ndarray): The non-negative dictionary matrix.
        - R (numpy.ndarray): The non-negative representation matrix.
        """
        # Intialize
        D, R = self.__NICA(X, n_components, random_state=random_state)
        return D, R
        
    def fit(self, X: np.ndarray, n_components: int, max_iter: int=500, 
            random_state: Union[int, np.random.RandomState, None]=None, 
            verbose: bool=True, imshow: bool=False, warm_start: bool=False, **kwargs) -> None:
        """
        Non-negative Matrix Factorization (NMF) algorithm using L2-norm for convergence criterion.
        
        Parameters:
        - X (numpy.ndarray): Input data matrix of shape (n_features, n_samples).
        - n_components (int): The number of components for matrix factorization.
        - max_iter (int, optional): Maximum number of iterations. Default is 5000.
        - verbose (bool, optional): Whether to show the progress bar.
        - random_state (int, np.random.RandomState, None, optional): Random state for reproducibility. Default is None.
        - imshow (bool, optional): Whether to plot convergence trend. Default is False.
        - warm_start (bool, optional): Whether to continue from the previous state. Default is False.
        - kwargs: Additional keyword arguments for the update rule.
        """
        # Record start time
        start_time = time.time()
        # Initialize D and R matrices using NICA algorithm by default
        if not warm_start or (warm_start and not hasattr(self, 'D') and not hasattr(self, 'R')):
            self.D, self.R = self.matrix_init(X, n_components, random_state)
        else:
            if verbose:
                print('Warm start enabled. Continuing from previous state.')

        # Compute initialization time
        init_time = time.time() - start_time
        # Copy D and R matrices for convergence check
        self.D_prev, self.R_prev = self.D.copy(), self.R.copy()
        if verbose:
            print(f'Initialization done. Time elapsed: {init_time:.2f} seconds.')
        # Iteratively update D and R matrices until convergence
        for _ in self.conditional_tqdm(range(max_iter), verbose=verbose):
            # Update D and R matrices
            flag = self.update(X, **kwargs)
            # Check convergence
            if flag:
                if verbose:
                    print('Converged at iteration', _)
                break
        if imshow:
            self.plot()

    @abstractmethod
    def update(self, X: np.ndarray, **kwargs: Dict[str, float]) -> bool:
        """
        Update rule for D and R matrices using a specific NMF algorithm, which must be implemented in the derived class.

        Parameters:
        - X (numpy.ndarray): Input data matrix of shape (n_features, n_samples).
        - kwargs: Additional keyword arguments for the update rule.

        Returns:
        - flag (bool): Whether the algorithm has converged.
        """
        # Calculate L2-norm based errors for convergence
        e_D = np.sqrt(np.sum((self.D - self.D_prev) ** 2, axis=(0, 1))) / self.D.size
        e_R = np.sqrt(np.sum((self.R - self.R_prev) ** 2, axis=(0, 1))) / self.R.size
        return (e_D < 1e-6 and e_R < 1e-6)

    def plot(self) -> None:
        """
        Plot the convergence trend of the cost function.
        """
        plt.plot(self.loss_list)
        plt.xlabel('Iteration')
        plt.ylabel('Cost function')
        plt.grid()
        plt.show()
    
    def conditional_tqdm(self, iterable, verbose: bool=True) -> Generator[int, None, None]:
        """
        Determine whether to use tqdm or not based on the verbose flag.

        Parameters:
        - iterable (range): Range of values to iterate over.
        - verbose (bool, optional): Whether to print progress bar. Default is True.

        Returns:
        - item (int): Current iteration.
        """
        if verbose:
            for item in tqdm(iterable):
                yield item
        else:
            for item in iterable:
                yield item
    
    def normalize(self, epsilon: float=1e-7) -> None:
        """
        Normalize columns of D and rows of R.

        Parameter:
        - epsilon (float, optional): Small constant added to denominator to prevent division by zero. Default is 1e-7.
        """
        # Normalize columns of D and rows of R
        norms = np.sqrt(np.sum(self.D**2, axis=0))
        self.D /= norms[np.newaxis, :] + epsilon
        self.R *= norms[:, np.newaxis]
    
    def evaluate(self, X_clean: np.ndarray, Y_true: np.ndarray, random_state: Union[int, np.random.RandomState, None]=None) -> Tuple[float, float, float]:
        """
        Evaluate the specific NMF algorithm on the specific dataset.

        Parameters:
        - X_clean (numpy.ndarray): The original clean data matrix of shape (n_features, n_samples).
        - Y_true (numpy.ndarray): The true labels corresponding to each sample in X of shape (n_samples,).
        - random_state (int, np.random.RandomState, None, optional): Random state for reproducibility. Default is None.

        Returns:
        - rmse (float): The root mean squared error of the reconstructed matrix and the original matrix.
        - acc (float): The accuracy score of the predicted labels based on the clustering results on the reconstructed matrix.
        - nmi (float): The normalized mutual information score of the predicted labels based on the clustering results on the reconstructed matrix.
        """
        Y_label = self.__labeling(self.R.T, Y_true, random_state=random_state)
        rmse = np.sqrt(mean_squared_error(X_clean, np.dot(self.D, self.R)))
        acc = accuracy_score(Y_true, Y_label)
        nmi = normalized_mutual_info_score(Y_true, Y_label)
        return rmse, acc, nmi

    def __labeling(self, X: np.ndarray, Y: np.ndarray, random_state: Union[int, np.random.RandomState, None]=None) -> np.ndarray:
        """
        Label data based on clusters obtained from KMeans clustering, 
        by assigning the most frequent label in each cluster.
        
        Parameters:
        - X (numpy.ndarray): Input feature matrix of shape (n_samples, n_features).
        - Y (numpy.ndarray): True labels corresponding to each sample in X of shape (n_samples,).

        Returns:
        - Y_pred (numpy.ndarray): Predicted labels for each sample based on the clustering results.

        Note:
        This function works best when the input data is somewhat separated into distinct 
        clusters that align with the true labels.
        """
        cluster = BisectingKMeans(len(set(Y)), random_state=random_state).fit(X)
        Y_pred = np.zeros(Y.shape)
        for i in set(cluster.labels_):
            ind = cluster.labels_ == i
            Y_pred[ind] = Counter(Y[ind]).most_common(1)[0][0] # assign label.
        return Y_pred
    
    def vectorized_armijo_rule(self, f, grad_f, X, alpha, c=1e-4, tau=0.5):
        """
        Vectorized Armijo rule to find the step size for each element in the matrix.

        Parameters:
        - f: The objective function, which should accept a matrix and return a scalar.
        - grad_f: The gradient of the objective function, which returns a matrix.
        - X: Current point, a matrix.
        - alpha: Initial step size, a scalar or a matrix.
        - c: A constant in (0, 1), typically a small value (default is 1e-4).
        - tau: Reduction factor for step size, typically in (0, 1) (default is 0.5).

        Returns:
        - alpha: Step sizes that satisfy the Armijo condition for each element.
        """
        # Compute the initial objective function value
        f_x = f(X)
        # Compute the initial gradient and its norm squared
        grad_f_x = grad_f(X)
        norm_grad_f_x_squared = np.square(np.linalg.norm(grad_f_x, axis=(0,1), keepdims=True))
        
        # Compute the sufficient decrease condition for the entire matrix
        sufficient_decrease = f_x - c * alpha * norm_grad_f_x_squared
        
        counter = 0
        # Check the condition for each element
        while np.any(f(X - alpha * grad_f_x) > sufficient_decrease) or counter >= 10:
            # Reduce alpha for elements not satisfying the condition
            alpha *= tau
            counter += 1
        return alpha
    
    @classmethod
    def from_pretrained(cls, file_path: str, **kwargs: Dict[str, float]) -> 'BasicNMF':
        """
        Load the model parameters from a file.

        Parameters:
        - file_path (str): The path to the file where the model parameters are saved.

        Returns:
        - instance (BasicNMF): An instance of the BasicNMF class with the loaded parameters.
        """
        import pickle
        with open(os.path.join(file_path), 'rb') as file:
            params = pickle.load(file)
        instance = cls(**kwargs)
        instance.__dict__.update(params)
        return instance
    
    def save(self, file_path: str) -> None:
        """
        Save the model parameters to a file.

        Parameters:
        - file_path (str): The path to the file where the model parameters will be saved.
        """
        import pickle
        with open(file_path, 'wb') as file:
            pickle.dump(self.__dict__, file)
    
    def __call__(self, **kwargs: Dict[str, float]):
        """
        Overwrite the __call__ method to fit the model with the given parameters.
        """
        self.fit(**kwargs)
    
class L2NormNMF(BasicNMF):
    name = 'L2Norm'
    """
    L2-norm NMF algorithm.
    """
    def __init__(self) -> None:
        super().__init__()

    def update(self, X: np.ndarray, threshold: float=1e-6, epsilon: float=1e-7) -> bool:
        """
        Update rule for D and R matrices using L2-norm NMF algorithm.

        Parameters:
        - X (numpy.ndarray): Input data matrix of shape (n_features, n_samples).
        - threshold (float, optional): Convergence threshold based on L2-norm. Default is 1e-6.
        - epsilon (float, optional): Small constant added to denominator to prevent division by zero. Default is 1e-7.

        Returns:
        - flag (bool): Whether the algorithm has converged.
        """
        # Multiplicative update rule for D and R matrices
        self.D *= np.dot(X, self.R.T) / (np.dot(np.dot(self.D, self.R), self.R.T) + epsilon)
        self.R *= np.dot(self.D.T, X) / (np.dot(np.dot(self.D.T, self.D), self.R) + epsilon)
        # Calculate the loss function
        loss = np.linalg.norm(X - np.dot(self.D, self.R), 'fro') ** 2
        self.loss_list.append(loss)
        # Calculate L2-norm based errors for convergence
        e_D = np.sqrt(np.sum((self.D - self.D_prev) ** 2, axis=(0, 1))) / self.D.size
        e_R = np.sqrt(np.sum((self.R - self.R_prev) ** 2, axis=(0, 1))) / self.R.size
        # Update previous matrices for next iteration
        self.D_prev, self.R_prev = self.D.copy(), self.R.copy()
        return (e_D < threshold and e_R < threshold)

class KLDivergenceNMF(BasicNMF):
    name = 'KLDivergence'
    """
    KL-divergence NMF algorithm.
    """
    def __init__(self) -> None:
        """
        Initialize the KL-divergence NMF algorithm.
        """
        super().__init__()
        self.prev_kl = float('inf')

    def update(self, X: np.ndarray, epsilon: float=1e-7, threshold: float=1e-4) -> bool:
        """
        Update rule for D and R matrices using KL-divergence NMF algorithm.

        Parameters:
        - X (numpy.ndarray): Input data matrix of shape (n_features, n_samples).
        - epsilon (float, optional): Small constant added to denominator to prevent division by zero. Default is 1e-7.
        - threshold (float, optional): Convergence threshold based on KL-divergence. Default is 1e-4.

        Returns:
        - flag (bool): Whether the algorithm has converged.
        """
        # Multiplicative update rule for D and R matrices
        self.D *= np.dot(X / (np.dot(self.D, self.R) + epsilon), self.R.T) / (np.dot(np.ones(X.shape), self.R.T) + epsilon)
        self.R *= np.dot(self.D.T, X / (np.dot(self.D, self.R) + epsilon)) / (np.dot(self.D.T, np.ones(X.shape)) + epsilon)

        # Calculate KL-divergence
        XR = np.dot(self.D, self.R) + epsilon
        kl_div = np.sum(X * np.log(np.maximum(epsilon, X / (XR + epsilon))) - X + XR)
        self.loss_list.append(kl_div)
        flag = abs(kl_div - self.prev_kl) < threshold
        self.prev_kl = kl_div  # Update previous KL divergence
        return flag

class ISDivergenceNMF(BasicNMF):
    name = 'ISDivergence'
    """
    IS-divergence NMF algorithm.
    """
    def __init__(self) -> None:
        """
        Initialize the IS-divergence NMF algorithm.
        """
        super().__init__()
        self.prev_is_div = float('inf')

    def update(self, X: np.ndarray, epsilon: float=1e-7, threshold: float=1e-6) -> bool:
        """
        Update rule for D and R matrices using IS-divergence NMF algorithm.

        Parameters:
        - X (numpy.ndarray): Input data matrix of shape (n_features, n_samples).
        - epsilon (float, optional): Small constant added to denominator to prevent division by zero. Default is 1e-7.
        - threshold (float, optional): Convergence threshold based on IS-divergence. Default is 1e-6.

        Returns:
        - flag (bool): Whether the algorithm has converged.
        """
        # Update R
        DR = np.dot(self.D, self.R)
        DR = np.where(DR > 0, DR, epsilon)
        self.R *= (np.dot(self.D.T, (DR ** (-2) * X))) / (np.dot(self.D.T, DR ** (-1)) + epsilon)
        # Update D
        DR = np.dot(self.D, self.R)
        DR = np.where(DR > 0, DR, epsilon)
        self.D *= (np.dot((DR ** (-2) * X), self.R.T)) / (np.dot(DR ** (-1), self.R.T) + epsilon)
        # Normalize D and R
        self.normalize(epsilon)
        # Calculate IS-divergence
        DR = np.dot(self.D, self.R) + epsilon
        is_div = np.sum(-np.log(np.maximum(epsilon, X / DR)) + X / DR - 1)
        # Adding L2 regularization terms to the IS-divergence
        # is_div += lambd * np.linalg.norm(self.D, 'fro') ** 2 + lambd * np.linalg.norm(self.R, 'fro')**2
        self.loss_list.append(is_div)
        flag = np.abs(is_div - self.prev_is_div) < threshold
        self.prev_is_div = is_div
        return flag

class L21NormNMF(BasicNMF):
    name = 'L21Norm'
    """
    L21 Norm NMF algorithm.
    """
    def __init__(self) -> None:
        """
        Initialize the L21 Norm NMF algorithm.
        """
        super().__init__()
    
    def update(self, X: np.ndarray, epsilon: float=1e-7, threshold: float=1e-4) -> bool:
        """
        Update rule for D and R matrices using L21 Norm NMF algorithm.

        Parameters:
        - X (numpy.ndarray): Input data matrix of shape (n_features, n_samples).
        - epsilon (float, optional): Small constant added to denominator to prevent division by zero. Default is 1e-7.
        - threshold (float, optional): Convergence threshold based on L21 Norm. Default is 1e-4.

        Returns:
        - flag (bool): Whether the algorithm has converged.
        """
        # Multiplicative update rule for D and R matrices
        residual = X - np.dot(self.D, self.R) # residual.shape = (n_features, n_samples)
        norm_values = np.sqrt(np.sum(residual ** 2, axis=1))
        diagonal = np.diag(1.0 / (norm_values + epsilon)) # diagonal.shape = (n_features, n_features)
        # Update rule for D
        self.D *= (np.dot(np.dot(diagonal, X), self.R.T) / (np.dot(np.dot(np.dot(diagonal, self.D), self.R), self.R.T) + epsilon))
        # Update rule for R
        self.R *= (np.dot(np.dot(self.D.T, diagonal), X) / (np.dot(np.dot(np.dot(self.D.T, diagonal), self.D), self.R) + epsilon))
        # Calculate the loss function
        loss = np.linalg.norm(X - np.dot(self.D, self.R), 'fro')
        self.loss_list.append(loss)
        # Calculate L2,1-norm based errors for convergence
        e_D = np.linalg.norm(self.D - self.D_prev, 'fro') / np.linalg.norm(self.D, 'fro')
        e_R = np.linalg.norm(self.R - self.R_prev, 'fro') / np.linalg.norm(self.R, 'fro')
        # Update previous matrices for next iteration
        self.D_prev, self.R_prev = self.D.copy(), self.R.copy()
        return (e_D < threshold and e_R < threshold)
        
class L1NormRegularizedNMF(BasicNMF):
    name = 'L1NormRegularized'
    """
    L1 Norm Regularized NMF algorithm.
    """
    def __init__(self) -> None:
        """
        Initialize the L1 Norm Regularized NMF algorithm.
        """
        super().__init__()

    # Helper function
    def soft_thresholding(self, x: np.ndarray, lambd: float) -> np.ndarray:
        """
        Soft thresholding operator.

        Parameters:
        - x (numpy.ndarray): Input data matrix of shape (n_features, n_samples).
        - lambd (float): Threshold value.

        Returns:
        - y (numpy.ndarray): The updated matrix after applying the soft thresholding operator.
        """
        return np.where(x > lambd, x - lambd, np.where(x < -lambd, x + lambd, 0))
    
    def update(self, X: np.ndarray, lambd: float=0.2, epsilon: float=1e-7, threshold: float=1e-8) -> bool:
        """
        Update rule for D and R matrices using L1 Norm  Regularized NMF algorithm.

        Parameters:
        - X (numpy.ndarray): Input data matrix of shape (n_features, n_samples).
        - lambd (float): Threshold value.
        - epsilon (float, optional): Small constant added to denominator to prevent division by zero. Default is 1e-7.
        - threshold (float, optional): Convergence threshold based on L1 Norm Regularized. Default is 1e-8.

        Returns:
        - flag (bool): Whether the algorithm has converged.
        """
        # Compute the error matrix
        S = X - np.dot(self.D, self.R)
        # Soft thresholding operator
        S = self.soft_thresholding(S, lambd/2)
        # Multiplicative update rule for D and R matrices
        update_D = np.dot(S - X, self.R.T)
        self.D *=  (np.abs(update_D) - update_D) / (2 * np.dot(np.dot(self.D, self.R), self.R.T) + epsilon)
        update_R = np.dot(self.D.T, S - X)
        self.R *=  (np.abs(update_R) - update_R) / (2 * np.dot(np.dot(self.D.T, self.D), self.R) + epsilon)
        self.normalize(epsilon)
        # Calculate the loss function
        loss = np.linalg.norm(X - np.dot(self.D, self.R) - S, 'fro') ** 2 + lambd * np.sum(np.abs(S))
        self.loss_list.append(loss)
        # Calculate L2-norm based errors for convergence
        e_D = np.sqrt(np.sum((self.D - self.D_prev) ** 2, axis=(0, 1))) / self.D.size
        e_R = np.sqrt(np.sum((self.R - self.R_prev) ** 2, axis=(0, 1))) / self.R.size
        # Update previous matrices for next iteration
        self.D_prev, self.R_prev = self.D.copy(), self.R.copy()
        return (e_D < threshold and e_R < threshold)
    
    def matrix_init(self, X: np.ndarray, n_components: int, 
                     random_state: Union[int, np.random.RandomState, None]=None) -> None:
        return self.Kmeans(X, n_components, random_state)

class CauchyNMF(BasicNMF):
    name = 'Cauchy'
    """
    Cauchy NMF algorithm.
    """
    def __init__(self) -> None:
        """
        Initialize the Cauchy NMF algorithm.
        """
        super().__init__()
    
    # Helper function
    def compute(self, A: np.ndarray, B: np.ndarray, epsilon: float) -> np.ndarray:
        """
        Update rule for Cauchy divergence.
        
        Parameters:
        A (numpy.ndarray): The first matrix, which is noted as A.
        B (numpy.ndarray): The second matrix, which is noted as B.
        epsilon (float): Small constant added to denominator to prevent division by zero.

        Returns:
        C (numpy.ndarray): The updated matrix.
        """
        temp = A ** 2 + 2 * B * A
        temp = np.where(temp > 0, temp, epsilon)
        return B / (A + np.sqrt(temp))

    def update(self, X: np.ndarray, epsilon: float=1e-7, threshold: float=1e-4) -> bool:
        """
        Update rule for D and R matrices using Cauchy NMF algorithm.

        Parameters:
        - X (numpy.ndarray): Input data matrix of shape (n_features, n_samples).
        - epsilon (float, optional): Small constant added to denominator to prevent division by zero. Default is 1e-7.
        - threshold (float, optional): Convergence threshold based on Cauchy. Default is 1e-4.

        Returns:
        - flag (bool): Whether the algorithm has converged.
        """
        if not hasattr(self, 'prev_cauchy_div'):
            DR = np.dot(self.D, self.R)
            log_residual = np.log(DR + epsilon) - np.log(X + epsilon)
            residual = X - DR
            self.prev_cauchy_div = np.sum(log_residual + residual / (DR + epsilon))
        # Update rule for D
        DR = np.dot(self.D, self.R)
        A = 3 / 4 * np.dot((DR / (DR ** 2 + X + epsilon)), self.R.T)
        B = np.dot(1 / (DR + epsilon), self.R.T)
        self.D *= self.compute(A, B, epsilon)
        # Update rule for R
        DR = np.dot(self.D, self.R)
        A = 3 / 4 * np.dot(self.D.T, (DR / (DR ** 2 + X + epsilon)))
        B = np.dot(self.D.T, 1 / (DR + epsilon))
        self.R *= self.compute(A, B, epsilon)
        # Calculate Cauchy divergence
        DR = np.dot(self.D, self.R)
        cauchy_div = np.sum(np.log(DR + epsilon) - np.log(X + epsilon) + (X - DR) / (DR + epsilon))
        self.loss_list.append(cauchy_div)
        flag = abs(cauchy_div - self.prev_cauchy_div) < threshold
        self.prev_cauchy_div = cauchy_div  # Update previous Cauchy divergence
        return flag

class CappedNormNMF(BasicNMF):
    name = 'CappedNorm'
    """
    Capped Norm NMF algorithm.
    """
    def __init__(self) -> None:
        """
        Initialize Capped Norm NMF algorithm.
        """
        super().__init__()
        self.loss_prev = float('inf')
    
    # Helper function
    def matrix_init(self, X: np.ndarray, n_components: int, 
                     random_state: Union[int, np.random.RandomState, None]=None) -> None:
        return self.Kmeans(X, n_components, random_state)
    
    def update(self, X, theta: float=0.2, threshold: float=1e-3, epsilon: float=1e-7) -> bool:
        """
        Update rule for D and R matrices using Capped Norm NMF algorithm.

        Parameters:
        - X (numpy.ndarray): Input data matrix of shape (n_features, n_samples).
        - theta (float, optional): Outlier parameter. Default is 0.2.
        - threshold (float, optional): Convergence threshold based on L2,1-norm. Default is 1e-4.
        - epsilon (float, optional): Small constant added to denominator to prevent division by zero. Default is 1e-7.
        """
        if not hasattr(self, 'I'):
            self.n_samples = X.shape[1]
            self.I = np.identity(self.n_samples)
        # Multiplicative update rule for D and R matrices
        G = self.R.T
        self.D *= np.dot(np.dot(X, self.I), G) / (np.dot(np.dot(np.dot(self.D, G.T), self.I), G) + epsilon)
        G *= np.sqrt((np.dot(np.dot(self.I, X.T), self.D)) / (np.dot(np.dot(np.dot(np.dot(self.I, G), G.T), X.T), self.D) + epsilon))
        self.R = G.T
        # Update rule for I
        diff = X - np.dot(self.D, self.R)
        norms = np.linalg.norm(diff, axis=0)
        norms /= np.max(norms)
        I = np.full_like(norms, epsilon)
        indices = np.where(norms < theta)
        I[indices] = 1 / (2 * norms[indices])
        self.I = np.diagflat(I)
        # Calculate the loss function
        loss = np.linalg.norm(X - np.dot(self.D, self.R), 'fro') ** 2
        flag = abs(loss - self.loss_prev) < threshold
        self.loss_list.append(loss)
        self.loss_prev = loss
        return flag

class HSCostNMF(BasicNMF):
    name = 'HSCost'
    """
    Hypersurface Cost NMF algorithm.
    """
    def __init__(self) -> None:
        """
        Initialize Hypersurface Cost NMF algorithm.
        """
        super().__init__()
        self.loss_prev = float('inf')
        # Objective function and its gradient
        self.obj_func = lambda X, D, R: np.linalg.norm(X - np.dot(D, R), 'fro')
        self.grad_D = lambda X, D, R: (np.dot((np.dot(D, R) - X), R.T)) / np.sqrt(1 + np.linalg.norm(X - np.dot(D, R), 'fro'))
        self.grad_R = lambda X, D, R: (np.dot(D.T, (np.dot(D, R) - X))) / np.sqrt(1 + np.linalg.norm(X - np.dot(D, R), 'fro'))

    def update(self, X: np.ndarray, threshold: float=1e-8, alpha: float=0.1, beta: float=0.1, c: float=1e-4, tau: float=0.5) -> bool:
        """
        Update rule for D and R matrices using Hypersurface Cost NMF algorithm.

        Parameters:
        - X (numpy.ndarray): Input data matrix of shape (n_features, n_samples).
        - alpha (float, optional): Learning rate for gradient descent. Default is 0.1.
        - beta (float, optional): Learning rate for gradient descent. Default is 0.1.
        - c (float, optional): A constant in (0, 1), typically a small value. Default is 1e-4.
        - tau (float, optional): A reduction factor for step size, typically in (0, 1). Default is 0.5.

        Returns:
        - flag (bool): Whether the algorithm has converged.
        """
        if not hasattr(self, 'alpha'):
            self.alpha = np.full_like(self.D, alpha)
            self.beta = np.full_like(self.R, beta)
        # Vectorized Armijo rule to update alpha and beta
        self.alpha = self.vectorized_armijo_rule(lambda D: self.obj_func(X, D, self.R), lambda D: self.grad_D(X, D, self.R), self.D, self.alpha, c, tau)
        self.beta = self.vectorized_armijo_rule(lambda R: self.obj_func(X, self.D, R), lambda R: self.grad_R(X, self.D, R), self.R, self.beta, c, tau)
        self.alpha = np.maximum(self.alpha, threshold)
        self.beta = np.maximum(self.beta, threshold)
        # Update rule for D and R
        self.D -= self.alpha * (np.dot((np.dot(self.D, self.R) - X), self.R.T)) / np.sqrt(1 + np.linalg.norm(X - np.dot(self.D, self.R), 'fro'))
        self.R -= self.beta * (np.dot(self.D.T, (np.dot(self.D, self.R) - X))) / np.sqrt(1 + np.linalg.norm(X - np.dot(self.D, self.R), 'fro'))
        self.D[np.where(self.D < 0)] = 0
        self.R[np.where(self.R < 0)] = 0
        # Calculate loss
        loss_current = np.sqrt(1 + np.linalg.norm(X - np.dot(self.D, self.R), 'fro')) - 1
        self.loss_list.append(loss_current)
        flag = abs(loss_current - self.loss_prev) < threshold
        # Update previous loss for next iteration 
        self.loss_prev = loss_current
        return flag