File size: 8,347 Bytes
bd67cfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import PIL
import numpy as np
import gradio as gr

from algorithm.pipeline import Pipeline

class App:
    def __init__(self, 
                nmf='L1NormRegularizedNMF', 
                dataset='YaleB', 
                reduce=3, 
                noise_type='salt_and_pepper', 
                noise_level=0.10, 
                random_state=99, 
                scaler='MinMax'):
        self.pipeline = Pipeline(nmf=nmf, 
                            dataset=dataset, 
                            reduce=reduce, 
                            noise_type=noise_type, 
                            noise_level=noise_level, 
                            random_state=random_state, 
                            scaler=scaler)

    def align_reduce(self, dataset_name):
        return 1 if dataset_name == 'ORL' else 3

    def reset_pipeline(self, nmf, dataset, reduce, noise_type, noise_level, random_state, scaler):
        noise_type, noise_level = self.convert_level_to_number(noise_type, noise_level)
        self.pipeline = Pipeline(nmf=nmf, 
                            dataset=dataset, 
                            reduce=reduce, 
                            noise_type=noise_type, 
                            noise_level=noise_level, 
                            random_state=random_state, 
                            scaler=scaler)

    def convert_level_to_number(self, type, level):
        map_dict = {"Uniform": {"Low": 0.1, "High": 0.3}, 
                    "Gaussian": {"Low": 0.05, "High": 0.08}, 
                    "Laplacian": {"Low": 0.04, "High": 0.06}, 
                    "Salt & Pepper": {"Low": 0.02, "High": 0.1}, 
                    "Block": {"Low": 10, "High": 15}}
        type_name = type.lower() if type != "Salt & pepper" else "salt_and_pepper"
        return type_name, map_dict[type][level]

    def execute(self, max_iter=500, idx=9):
        self.pipeline.execute(max_iter=max_iter)
        return *self.visualize(idx), *self.metrics()

    def visualize(self, idx=9):
        image_raw, image_noise, image_recon = self.pipeline.visualization(idx=idx)
        return self.array2image(image_raw), self.array2image(image_noise), self.array2image(image_recon)

    def metrics(self):
        return self.pipeline.metrics
    
    def array2image(self, array):
        image_size = self.pipeline.img_size
        return PIL.Image.fromarray(self.scale_pixel(array)).resize((image_size))
    
    def scale_pixel(self, image):
        return ((image - image.min()) / (image.max() - image.min()) * 255).astype(np.uint8)
    
    def clear_params(self):
        self.pipeline = Pipeline()
        return 'L1NormRegularizedNMF', 'YaleB', 3, 'Salt & Pepper', 'Low', 99, 'MinMax'
    
app = App()
image_size = app.pipeline.img_size

with gr.Blocks() as demo:
    gr.Markdown("# NMF Image Reconstruction")
    with gr.Row():
        with gr.Group():
            with gr.Row():
                nmf = gr.Dropdown(
                    label="NMF Algorithm",
                    choices=['L1NormRegularizedNMF', 'L2NormNMF', 'KLDivergenceNMF', 
                            'ISDivergenceNMF', 'L21NormNMF', 'HSCostNMF', 
                            'CappedNormNMF', 'CauchyNMF'],
                    value='L1NormRegularizedNMF',
                    info="Choose the NMF algorithm.")
                
                dataset = gr.Dropdown(
                    label="Dataset",
                    choices=['ORL', 'YaleB'],
                    value='YaleB',
                    info="Choose the dataset.")
                
                reduce = gr.Number(
                    value=3,
                    label="Reduce",
                    info="Choose the reduce.")
                
            with gr.Row():
                noise_type = gr.Dropdown(
                    label="Noise Type",
                    choices=['Uniform', 'Gaussian', 'Laplacian', 'Salt & Pepper', 'Block'],
                    value='Salt & Pepper',
                    info="Choose the noise type.")
                
                noise_level = gr.Radio(
                    choices=['Low', 'High'],
                    value='Low',
                    label="Noise Level",
                    info="Choose the noise level."
                )

            with gr.Row():
                random_state = gr.Number(
                    value=99, 
                    label="Random State",
                    info="Choose the random state.",)
                
                scaler = gr.Dropdown(
                    label="Scaler",
                    choices=['MinMax', 'Standard'],
                    value='MinMax',
                    info="Choose the scaler.")
                
            with gr.Row():
                max_iter= gr.Number(
                    value=500,
                    label="Max Iteration",
                    info="Choose the max iteration.")
                idx = gr.Number(
                    value=9,
                    label="Image Index",
                    info="Choose the image index.")
            
            with gr.Row():
                execute_bt = gr.Button(value="Execute Algorithm",)
                clear_params_bt = gr.Button(
                    value="Clear Parameters")
        
        with gr.Group():
            with gr.Row():

                output_image_raw = gr.Image(
                    height=image_size[1],
                    width=image_size[0],
                    image_mode="L",
                    label="Original Image",
                    show_download_button=True,
                    show_share_button=True,)
                output_image_noise = gr.Image(
                    height=image_size[1],
                    width=image_size[0],
                    label="Noisy Image",
                    image_mode="L",
                    show_download_button=True,
                    show_share_button=True,)
                output_image_recon = gr.Image(
                    height=image_size[1],
                    width=image_size[0],
                    label="Reconstructed Image",
                    image_mode="L",
                    show_download_button=True,
                    show_share_button=True,)
                
            with gr.Row():
                rmse = gr.Number(
                    label="RMSE",
                    info="Average root mean square error",
                    precision=4,)
                acc = gr.Number(
                    label="Acc",
                    info="Accuracy",
                    precision=4,)
                nmi = gr.Number(
                    label="NMI",
                    info="Normalized mutual information",
                    precision=4,)

                clear_output_bt = gr.ClearButton(
                    value="Clear Output",
                components=[output_image_raw, output_image_noise, output_image_recon, rmse, acc, nmi],)
    
    nmf.input(app.reset_pipeline, inputs=[nmf, dataset, reduce, noise_type, noise_level, random_state, scaler])
    dataset.input(app.reset_pipeline, inputs=[nmf, dataset, reduce, noise_type, noise_level, random_state, scaler])
    dataset.input(app.align_reduce, inputs=[dataset], outputs=[reduce])
    reduce.input(app.reset_pipeline, inputs=[nmf, dataset, reduce, noise_type, noise_level, random_state, scaler])
    noise_type.input(app.reset_pipeline, inputs=[nmf, dataset, reduce, noise_type, noise_level, random_state, scaler])
    noise_level.input(app.reset_pipeline, inputs=[nmf, dataset, reduce, noise_type, noise_level, random_state, scaler])
    random_state.input(app.reset_pipeline, inputs=[nmf, dataset, reduce, noise_type, noise_level, random_state, scaler])
    scaler.input(app.reset_pipeline, inputs=[nmf, dataset, reduce, noise_type, noise_level, random_state, scaler])
    idx.input(app.visualize, inputs=[idx], outputs=[output_image_raw, output_image_noise, output_image_recon])
    execute_bt.click(app.execute, inputs=[max_iter, idx], outputs=[output_image_raw, output_image_noise, output_image_recon, rmse, acc, nmi])
    clear_params_bt.click(app.clear_params, outputs=[nmf, dataset, reduce, noise_type, noise_level, random_state, scaler])

if __name__ == '__main__':
    demo.queue()
    demo.launch(inbrowser=True,
                share=True,
                server_name="0.0.0.0",
                server_port=8080)