File size: 8,700 Bytes
bd67cfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
from typing import Union, Tuple

import numpy as np

class MinMaxScaler:
    """
    This class scales and transforms features to [0, 1].
    """
    def fit(self, X: np.ndarray) -> None:
        """
        Compute the minimum and the range of the data for later scaling.
        
        Parameters:
        - X: numpy array-like, shape (n_samples, n_features)
            The data used to compute the minimum and range used for later scaling.
        """
        self.min_ = np.min(X, axis=0)
        self.range_ = np.max(X, axis=0) - self.min_


    def transform(self, X: np.ndarray) -> np.ndarray:
        """
        Scale the data using the values computed during the fit method.
        
        Parameters:
        - X: numpy array-like, shape (n_samples, n_features)
            Input data that needs to be scaled.
        
        Returns:
        - numpy array, shape (n_samples, n_features)
            Transformed data.
        """
        return (X - self.min_) / self.range_

    def fit_transform(self, X: np.ndarray) -> np.ndarray:
        """
        Fit to the data and then transform it.
        
        Parameters:
        - X: numpy array-like, shape (n_samples, n_features)
            Input data that needs to be scaled and transformed.
        
        Returns:
        - numpy array, shape (n_samples, n_features)
            Transformed data.
        """
        self.fit(X)
        return self.transform(X)

class StandardScaler:
    """
    This class standardizes features by removing the mean and scaling to unit variance.
    """
    def fit(self, X: np.ndarray) -> None:
        """
        Compute the mean and standard deviation of the data for later standardization.
        
        Parameters:
        - X: numpy array-like, shape (n_samples, n_features)
            The data used to compute the mean and standard deviation used for later standardization.
        """
        self.mean_ = np.mean(X, axis=0)
        self.std_ = np.std(X, axis=0)

    def transform(self, X: np.ndarray) -> np.ndarray:
        """
        Standardize the data using the values computed during the fit method.
        
        Parameters:
        - X: numpy array-like, shape (n_samples, n_features)
            Input data that needs to be standardized.
        
        Returns:
        - numpy array, shape (n_samples, n_features)
            Transformed data.
        """
        return (X - self.mean_) / self.std_

    def fit_transform(self, X: np.ndarray) -> np.ndarray:
        """
        Fit to the data and then transform it.
        
        Parameters:
        - X: numpy array-like, shape (n_samples, n_features)
            Input data that needs to be standardized and transformed.
        
        Returns:
        - numpy array, shape (n_samples, n_features)
            Transformed data.
        """
        self.fit(X)
        return self.transform(X)

class NoiseAdder:
    """
        This class adds noise to data.
    """
    def __init__(self, random_state: Union[int, np.random.RandomState, None]=None) -> None:
        """
        Initializes the NoiseAdder with a random state and noise parameters.

        Parameters:
        - random_state (int or RandomState instance or None): Controls the randomness. If int, is used as seed for RandomState.
        - noise_params (dict): Additional noise parameters.
        """
        self.rng = np.random.RandomState(random_state)
    
    def add_uniform_noise(self, X_hat: np.ndarray, noise_level: int=0.1) -> Tuple[np.ndarray, np.ndarray]:
        """
        Add uniform random noise to data.

        Parameters:
        - X_hat (numpy array): Original data.

        Returns:
        - Numpy array of uniform noise.
        - Numpy array with added uniform noise.
        """
        a, b = 0, 1
        # Generate noise
        X_noise = self.rng.uniform(a, b, size=X_hat.shape) * noise_level * (np.max(X_hat) - np.min(X_hat))
        return X_noise, X_hat + X_noise

    def add_gaussian_noise(self, X_hat, noise_level=0.1):
        """
        Add Gaussian noise to data.

        Parameters:
        - X_hat (numpy array): Original data.
        - mean (float): Mean of the Gaussian distribution.
        - std (float): Standard deviation of the Gaussian distribution.

        Returns:
        - Numpy array of Gaussian noise.
        - Numpy array with added Gaussian noise.
        """
        mean, std = 0, 1
        # Generate noise
        X_noise = self.rng.normal(mean, std, size=X_hat.shape) * noise_level * (np.max(X_hat) - np.min(X_hat))
        return X_noise, X_hat + X_noise

    def add_laplacian_noise(self, X_hat, noise_level=0.1):
        """
        Add Laplacian noise to data.

        Parameters:
        - X_hat (numpy array): Original data.
        - mu (float): Location parameter for the Laplacian distribution.
        - lambd (float): Scale (diversity) parameter for the Laplacian distribution.

        Returns:
        - Numpy array of Laplacian noise.
        - Numpy array with added Laplacian noise.
        """
        # Initialize parameters
        mu, lambd = 0, 1
        # Generate noise
        X_noise = self.rng.laplace(mu, lambd, size=X_hat.shape) * noise_level * np.max(X_hat)
        return X_noise, X_hat + X_noise

    def add_block_noise(self, X_hat: np.ndarray, img_width: int, block_size: int=10) -> Tuple[np.ndarray, np.ndarray]:
        """
        Add block noise to multiple flattened image samples.

        Parameters:
        - X (numpy array): Array of shape (m, n) where m is flattened image length and n is number of samples
        - img_width (int): width of the original image
        - block_size (int): size of the block to occlude
        
        Returns:
        - Numpy array of noise added to each sample
        - Numpy array with added block noise for all samples
        """
        # Initalize parameters
        X = X_hat.copy()
        m, n_samples = X.shape
        X_noise = np.zeros((m, n_samples), dtype=np.uint8)
        # For each sample in X
        for i in range(n_samples):
            sample = X[:, i]
            # Reshape the flattened array to 2D
            img_2d = sample.reshape(-1, img_width)
            height, width = img_2d.shape
            # Ensure the block size isn't larger than the image dimensions
            block_size = min(block_size, width, height)
            # Generate a random starting point for the block
            x_start = self.rng.randint(0, width - block_size)
            y_start = self.rng.randint(0, height - block_size)
            # Add block noise
            img_2d[y_start:y_start+block_size, x_start:x_start+block_size] = 255
            # Store the noise block to noise array
            noise_2d = np.zeros((height, width), dtype=np.uint8)
            noise_2d[y_start:y_start+block_size, x_start:x_start+block_size] = 255
            X_noise[:, i] = noise_2d.ravel()
            # Flatten the array back to 1D and store back in X
            X[:, i] = img_2d.ravel()
        return X_noise, X
    
    def add_salt_and_pepper_noise(self, X_hat, noise_level=0.02, salt_ratio=0.5) -> Tuple[np.ndarray, np.ndarray]:
        """
        Add "salt and pepper" noise to data.

        Parameters:
        - X_hat (numpy array): Original data.
        - amount (float): Proportion of image pixels to be replaced.
        - salt_ratio (float): Proportion of replaced pixels that are "salt".

        Returns:
        - Numpy array of salt and pepper noise.
        - Numpy array with added salt and pepper noise.
        """
        # Initialize parameters
        X = X_hat.copy()
        X_noise = np.zeros_like(X)
        # Get the total number of pixels that should be replaced by noise
        total_pixels = X.size
        num_noise_pixels = int(total_pixels * noise_level)
        # Separate the number of salt and pepper pixels based on the salt_ratio
        num_salt = int(num_noise_pixels * salt_ratio)
        num_pepper = num_noise_pixels - num_salt
        # Directly generate the noise coordinates without overlap
        noise_coords = self.rng.choice(total_pixels, num_noise_pixels, replace=False)
        salt_coords = noise_coords[:num_salt]
        pepper_coords = noise_coords[num_salt:]
        # Convert the 1D noise coordinates back to tuple of N-dim coordinates
        salt_coords = np.unravel_index(salt_coords, X.shape)
        pepper_coords = np.unravel_index(pepper_coords, X.shape)
        # Set salt and pepper pixels in the image
        max_pixel_val = np.max(X)
        X_noise[salt_coords] = max_pixel_val
        X_noise[pepper_coords] = 0
        X[salt_coords] = max_pixel_val
        X[pepper_coords] = 0
        return X_noise, X