Spaces:
Sleeping
Sleeping
File size: 16,598 Bytes
bd67cfe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
import os
import csv
import logging
from typing import Union, List, Tuple, Generator
import numpy as np
import pandas as pd
from algorithm.datasets import load_data, get_image_size
from algorithm.preprocess import NoiseAdder, MinMaxScaler, StandardScaler
from algorithm.sample import random_sample
from algorithm.nmf import BasicNMF, L2NormNMF, KLDivergenceNMF, ISDivergenceNMF, L21NormNMF, HSCostNMF, L1NormRegularizedNMF, CappedNormNMF, CauchyNMF
from algorithm.user_evaluate import evaluate
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
def summary(log_file_name: str) -> pd.DataFrame:
"""
Parameter:
log_file_name (str): The name of the log file to read.
Return:
result (pandas.DataFrame): The summary of the log file.
"""
df = pd.read_csv(log_file_name)
result = df.groupby(by=['dataset', 'noise_type', 'noise_level'])[['rmse', 'nmi', 'acc']].mean()
return result
class BasicBlock(object):
"""
Basic block for the pipeline.
"""
def basic_info(self, nmf: Union[BasicNMF, str], dataset: str, scaler: str) -> Tuple[str, Union[MinMaxScaler, StandardScaler], BasicNMF]:
"""
Get the basic information for the pipeline.
Parameters:
- nmf (Union[BasicNMF, str]): NMF algorithm to use.
- dataset (str): Name of the dataset to use.
- scaler (str): Name of the scaler to use.
Returns:
- folder (str): Folder of the dataset.
- scaler (MinMaxScaler or StandardScaler): Scaler to use.
- nmf (BasicNMF): NMF algorithm to use.
"""
# Create mappings for the NMF algorithms, datasets, and scalers
# Store NMF algorithms in a dictionary
nmf_dict = {
'L2NormNMF': L2NormNMF,
'KLDivergenceNMF': KLDivergenceNMF,
'ISDivergenceNMF': ISDivergenceNMF,
'L21NormNMF': L21NormNMF,
'HSCostNMF': HSCostNMF,
'L1NormRegularizedNMF': L1NormRegularizedNMF,
'CappedNormNMF': CappedNormNMF,
'CauchyNMF': CauchyNMF
}
# Store datasets in a dictionary
dataset_dict = {
'ORL': 'data/ORL',
'YaleB': 'data/CroppedYaleB'
}
# Store scalers in a dictionary
scaler_dict = {
'MinMax': MinMaxScaler(),
'Standard': StandardScaler()
}
folder = dataset_dict.get(dataset, 'data/ORL')
# Scale the data
scaler = scaler_dict.get(scaler, MinMaxScaler())
# Choose an NMF algorithm
if isinstance(nmf, BasicNMF):
nmf = nmf
else:
# Choose an NMF algorithm
nmf = nmf_dict.get(nmf, L1NormRegularizedNMF)()
return folder, scaler, nmf
def load_data(self, folder: str, reduce: int=1, random_state: Union[int, np.random.RandomState, None]=None) -> Tuple[np.ndarray, np.ndarray, Tuple[int, int]]:
"""
Load the data.
Parameters:
- folder (str): Folder of the dataset.
- reduce (int): Factor by which the image size is reduced for visualization.
- random_state (Union[int, np.random.RandomState, None]): Random state to use for sampling.
Returns:
- X_hat (np.ndarray): The data matrix.
- Y_hat (np.ndarray): The label matrix.
- img_size (Tuple[int, int]): Size of the images.
"""
# Load ORL dataset
X_hat, Y_hat = load_data(folder, reduce=reduce)
# Randomly sample 90% of the data
X_hat, Y_hat = random_sample(X_hat, Y_hat, 0.9, random_state=random_state)
# Get the size of images
img_size = get_image_size(folder)
return X_hat, Y_hat, img_size
def add_noise(self, X_hat: np.ndarray, noise_type: str, noise_level: float, random_state: Union[int, np.random.RandomState, None], reduce: int) -> np.ndarray:
"""
Add noise to the data.
Parameters:
- X_hat (np.ndarray): The data matrix.
- noise_type (str): Type of noise to add to the data.
- noise_level (float): Level of noise to add to the data.
- random_state (Union[int, np.random.RandomState, None]): Random state to use for adding noise.
- reduce (int): Factor by which the image size is reduced for visualization.
Returns:
- X_noise (np.ndarray): The noisy data matrix.
"""
# Set random state and noise adder
noise_adder = NoiseAdder(random_state=random_state)
# Create a dictionary of noise functions
noise_dict = {
'uniform': (noise_adder.add_uniform_noise, {'X_hat': X_hat, 'noise_level': noise_level}),
'gaussian': (noise_adder.add_gaussian_noise, {'X_hat': X_hat, 'noise_level': noise_level}),
'laplacian': (noise_adder.add_laplacian_noise, {'X_hat': X_hat, 'noise_level': noise_level}),
'salt_and_pepper': (noise_adder.add_salt_and_pepper_noise, {'X_hat': X_hat, 'noise_level': noise_level}),
'block': (noise_adder.add_block_noise, {'X_hat': X_hat, 'block_size': noise_level, 'img_width': self.img_size[0]//reduce})
}
# Map the noise type to the noise function
noise_func, args = noise_dict.get(noise_type, (noise_adder.add_uniform_noise, {'X_hat': X_hat, 'noise_level': noise_level}))
# Add noise to the data
_, X_noise = noise_func(**args)
return X_noise
def scale(self, X_hat: np.ndarray, X_noise: np.ndarray, scaler: Union[MinMaxScaler, StandardScaler]) -> Tuple[np.ndarray, np.ndarray]:
"""
Scale the data.
Parameters:
- X_hat (np.ndarray): The data matrix.
- X_noise (np.ndarray): The noisy data matrix.
- scaler (MinMaxScaler or StandardScaler): Scaler to use for scaling the data.
Returns:
- X_hat_scaled (np.ndarray): The scaled data matrix.
- X_noise_scaled (np.ndarray): The scaled noisy data matrix.
"""
# Scale the data
X_hat_scaled = scaler.fit_transform(X_hat)
X_noise_scaled = scaler.transform(X_noise)
# Ensure that the scaled noisy data is non-negative
X_noise_scaled += np.abs(np.min(X_noise_scaled)) * np.abs(np.min(X_noise_scaled)) * int(np.min(X_noise_scaled) < 0)
return X_hat_scaled, X_noise_scaled
class Pipeline(BasicBlock):
def __init__(self, nmf: Union[str, BasicNMF], dataset: str='ORL', reduce: int=1, noise_type: str='uniform',
noise_level: float=0.02, random_state: int=3407, scaler: str='MinMax') -> None:
"""
Initialize the pipeline.
Parameters:
- nmf (str or BasicNMF): Name of the NMF algorithm to use.
- dataset (str): Name of the dataset to use.
- reduce (int): Factor by which the image size is reduced for visualization.
- noise_type (str): Type of noise to add to the data.
- noise_level (float): Level of noise to add to the data.
- random_state (int): Random state to use for the NMF algorithm.
- scaler (str): Name of the scaler to use for scaling the data.
Returns:
None. The function will initialize the pipeline.
"""
# Get the basic information for the pipeline
folder, scaler, self.nmf = self.basic_info(nmf, dataset, scaler)
# Load the data
X_hat, self.__Y_hat, self.img_size = self.load_data(folder, reduce=reduce, random_state=random_state)
# Add noise to the data
X_noise = self.add_noise(X_hat, noise_type, noise_level, random_state, reduce)
# Scale the data
self.__X_hat_scaled, self.__X_noise_scaled = self.scale(X_hat, X_noise, scaler)
self.reduce = reduce
self.random_state = random_state
# Delete the attributes that might occupy significant memory
del X_hat, X_noise, folder, scaler, noise_type, noise_level, random_state, dataset, reduce, nmf
def execute(self, max_iter: int, convergence_trend: bool=False, matrix_size: bool=False, verbose: bool=False) -> None:
"""
Run the pipeline.
Parameters:
- max_iter (int): Maximum number of iterations to run the NMF algorithm.
- convergence_trend (bool): Whether to display the convergence trend of the NMF algorithm.
- matrix_size (bool): Whether to display the size of the basis and coefficient matrices.
- verbose (bool): Whether to display the verbose output of the NMF algorithm.
"""
# Run NMF
self.nmf.fit(self.__X_noise_scaled, len(set(self.__Y_hat)), max_iter=max_iter,
random_state=self.random_state, imshow=convergence_trend, verbose=verbose)
# Get the dictionary and representation matrices
self.D, self.R = self.nmf.D, self.nmf.R
if matrix_size:
print('D.shape={}, R.shape={}'.format(self.D.shape, self.R.shape))
self.metrics = self.nmf.evaluate(self.__X_hat_scaled, self.__Y_hat, random_state=self.random_state)
return self.metrics
def evaluate(self, idx: int=2, imshow: bool=False) -> None:
"""
Evaluate the NMF algorithm.
Parameters:
- idx (int): Index of the image to evaluate.
- imshow (bool): Whether to display the images.
"""
evaluate(self.nmf, self.metrics, self.__X_hat_scaled, self.__X_noise_scaled,
self.img_size, self.reduce, idx, imshow)
def visualization(self, idx: int=2) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Visualize the NMF algorithm.
Parameters:
- idx (int): Index of the image to visualize.
Returns:
- X_i (np.ndarray): The original image.
- X_noise_i (np.ndarray): The noisy image.
- DR_i (np.ndarray): The reconstructed image.
"""
DR = np.dot(self.D, self.R).reshape(self.__X_hat_scaled.shape[0], self.__X_hat_scaled.shape[1])
# Calculate reduced image size based on the 'reduce' factor
img_size = [i//self.reduce for i in self.img_size]
# Retrieve the specified image from the data
X_i = self.__X_hat_scaled[:,idx].reshape(img_size[1],img_size[0])
X_noise_i = self.__X_noise_scaled[:,idx].reshape(img_size[1],img_size[0])
DR_i = DR[:,idx].reshape(img_size[1],img_size[0])
return X_i, X_noise_i, DR_i
def cleanup(self) -> None:
"""
Cleanup method to release resources and delete instances.
"""
# Delete attributes that might occupy significant memory
if hasattr(self, 'nmf'):
del self.nmf, self.__X_hat_scaled, self.__X_noise_scaled, self.D, self.R, self.metrics
class Experiment:
"""
Set up the experiment.
"""
data_dirs = ['data/ORL', 'data/CroppedYaleB']
data_container = [[], []]
noises = {
'uniform': [0.1, 0.3],
'gaussian': [0.05, 0.08],
'laplacian': [0.04, 0.06],
'salt_and_pepper': [0.02, 0.1],
'block': [10, 15],}
nmf_dict = {
'L2NormNMF': L2NormNMF,
'KLDivergenceNMF': KLDivergenceNMF,
'ISDivergenceNMF': ISDivergenceNMF,
'L21NormNMF': L21NormNMF,
'HSCostNMF': HSCostNMF,
'L1NormRegularizedNMF': L1NormRegularizedNMF,
'CappedNormNMF': CappedNormNMF,
'CauchyNMF': CauchyNMF,}
def __init__(self,
seeds: List[int]=None) -> None:
"""
Initialize the experiment.
Parameters:
- seeds (List[int]): Random seeds to use for the experiment.
"""
self.seeds = [0, 42, 99, 512, 3407] if seeds is None else seeds
def choose(self, nmf: Union[str, BasicNMF]) -> None:
"""
Choose an NMF algorithm. Essentially, this method sets the NMF algorithm to use for the experiment.
nmf (Union[str, BasicNMF]): NMF algorithm to use.
"""
if isinstance(nmf, BasicNMF):
self.nmf = nmf
else:
# Choose an NMF algorithm
self.nmf = self.nmf_dict.get(nmf, L1NormRegularizedNMF)()
def data_loader(self) -> Generator[Tuple[str, int, np.ndarray, np.ndarray, np.ndarray, str, float], None, None]:
"""
Construct a generator to load the data.
Returns:
- data_file (str): Name of the dataset.
- seed (int): Random seed to use for the experiment.
- X_hat_scaled (np.ndarray): The scaled data matrix.
- Y_hat (np.ndarray): The label matrix.
- X_noise_scaled (np.ndarray): The scaled noisy data matrix.
- noise_type (str): Type of noise to add to the data.
- noise_level (float): Level of noise to add to the data.
"""
scaler = MinMaxScaler()
# Data file loop
for data_file in self.data_dirs:
reduce = 1 if data_file.endswith('ORL') else 3
image_size = get_image_size(data_file)
X_hat_, Y_hat_ = load_data(root=data_file, reduce=reduce)
# Random seed loop
for seed in self.seeds:
noise_adder = NoiseAdder(random_state=seed)
X_hat, Y_hat = random_sample(X_hat_, Y_hat_, 0.9, random_state=seed)
X_hat_scaled = scaler.fit_transform(X_hat)
# Noise type loop
for noise_type in self.noises:
add_noise_ = getattr(noise_adder, f'add_{noise_type}_noise')
# Noise level loop
for noise_level in self.noises[noise_type]:
_, X_noise = add_noise_(X_hat, noise_level=noise_level) if noise_type != 'block' else add_noise_(X_hat, image_size[0]//reduce, noise_level)
X_noise_scaled = scaler.transform(X_noise)
X_noise_scaled += np.abs(np.min(X_noise_scaled)) * np.abs(np.min(X_noise_scaled)) * int(np.min(X_noise_scaled) < 0)
yield data_file.split("/")[-1], seed, X_hat_scaled, Y_hat, X_noise_scaled, noise_type, noise_level
def sync_fit(self, dataset: str, seed: int, X_hat_scaled: np.ndarray, Y_hat: np.ndarray, X_noise_scaled: np.ndarray, noise_type: str, noise_level: float) -> Tuple[str, str, float, int, float, float, float]:
"""
Fit the NMF algorithm on the dataset with noise synchronously.
Parameters:
- dataset (str): Name of the dataset.
- seed (int): Random seed to use for the experiment.
- X_hat_scaled (np.ndarray): The scaled data matrix.
- Y_hat (np.ndarray): The label matrix.
- X_noise_scaled (np.ndarray): The scaled noisy data matrix.
- noise_type (str): Type of noise to add to the data.
- noise_level (float): Level of noise to add to the data.
Returns:
- dataset (str): Name of the dataset.
- noise_type (str): Type of noise to add to the data.
- noise_level (float): Level of noise to add to the data.
- seed (int): Random seed to use for the experiment.
- rmse (float): Root mean squared error of the NMF algorithm.
- acc (float): Accuracy of the NMF algorithm.
- nmi (float): Normalized mutual information of the NMF algorithm.
"""
self.nmf.fit(X_noise_scaled, len(set(Y_hat)), random_state=seed, verbose=False)
# Display the current experiment information
logging.info(f'Dataset: {dataset} Random seed: {seed} - Test on {noise_type} with {noise_level} ended.')
return dataset, noise_type, noise_level, seed, *self.nmf.evaluate(X_hat_scaled, Y_hat, random_state=seed)
def execute(self) -> None:
"""
Execute the experiments.
"""
# Lazy import to avoid multiprocessing error
import multiprocessing
results = []
# Define the multiprocessing pool
with multiprocessing.Pool(10) as pool:
for result in pool.starmap(self.sync_fit, self.data_loader()):
# Append the result to the list
results.append(result)
# Write the results to a csv file
if not os.path.exists(f'{self.nmf.name}_log.csv'):
mode = 'w'
else:
mode = 'a'
with open(f'{self.nmf.name}_log.csv', mode) as f:
writer = csv.writer(f)
if mode == 'w':
writer.writerow(['dataset', 'noise_type', 'noise_level', 'seed', 'rmse', 'acc', 'nmi'])
for result in results:
writer.writerow(result) |