XavierSpycy
First commit
bd67cfe
raw
history blame
16.6 kB
import os
import csv
import logging
from typing import Union, List, Tuple, Generator
import numpy as np
import pandas as pd
from algorithm.datasets import load_data, get_image_size
from algorithm.preprocess import NoiseAdder, MinMaxScaler, StandardScaler
from algorithm.sample import random_sample
from algorithm.nmf import BasicNMF, L2NormNMF, KLDivergenceNMF, ISDivergenceNMF, L21NormNMF, HSCostNMF, L1NormRegularizedNMF, CappedNormNMF, CauchyNMF
from algorithm.user_evaluate import evaluate
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
def summary(log_file_name: str) -> pd.DataFrame:
"""
Parameter:
log_file_name (str): The name of the log file to read.
Return:
result (pandas.DataFrame): The summary of the log file.
"""
df = pd.read_csv(log_file_name)
result = df.groupby(by=['dataset', 'noise_type', 'noise_level'])[['rmse', 'nmi', 'acc']].mean()
return result
class BasicBlock(object):
"""
Basic block for the pipeline.
"""
def basic_info(self, nmf: Union[BasicNMF, str], dataset: str, scaler: str) -> Tuple[str, Union[MinMaxScaler, StandardScaler], BasicNMF]:
"""
Get the basic information for the pipeline.
Parameters:
- nmf (Union[BasicNMF, str]): NMF algorithm to use.
- dataset (str): Name of the dataset to use.
- scaler (str): Name of the scaler to use.
Returns:
- folder (str): Folder of the dataset.
- scaler (MinMaxScaler or StandardScaler): Scaler to use.
- nmf (BasicNMF): NMF algorithm to use.
"""
# Create mappings for the NMF algorithms, datasets, and scalers
# Store NMF algorithms in a dictionary
nmf_dict = {
'L2NormNMF': L2NormNMF,
'KLDivergenceNMF': KLDivergenceNMF,
'ISDivergenceNMF': ISDivergenceNMF,
'L21NormNMF': L21NormNMF,
'HSCostNMF': HSCostNMF,
'L1NormRegularizedNMF': L1NormRegularizedNMF,
'CappedNormNMF': CappedNormNMF,
'CauchyNMF': CauchyNMF
}
# Store datasets in a dictionary
dataset_dict = {
'ORL': 'data/ORL',
'YaleB': 'data/CroppedYaleB'
}
# Store scalers in a dictionary
scaler_dict = {
'MinMax': MinMaxScaler(),
'Standard': StandardScaler()
}
folder = dataset_dict.get(dataset, 'data/ORL')
# Scale the data
scaler = scaler_dict.get(scaler, MinMaxScaler())
# Choose an NMF algorithm
if isinstance(nmf, BasicNMF):
nmf = nmf
else:
# Choose an NMF algorithm
nmf = nmf_dict.get(nmf, L1NormRegularizedNMF)()
return folder, scaler, nmf
def load_data(self, folder: str, reduce: int=1, random_state: Union[int, np.random.RandomState, None]=None) -> Tuple[np.ndarray, np.ndarray, Tuple[int, int]]:
"""
Load the data.
Parameters:
- folder (str): Folder of the dataset.
- reduce (int): Factor by which the image size is reduced for visualization.
- random_state (Union[int, np.random.RandomState, None]): Random state to use for sampling.
Returns:
- X_hat (np.ndarray): The data matrix.
- Y_hat (np.ndarray): The label matrix.
- img_size (Tuple[int, int]): Size of the images.
"""
# Load ORL dataset
X_hat, Y_hat = load_data(folder, reduce=reduce)
# Randomly sample 90% of the data
X_hat, Y_hat = random_sample(X_hat, Y_hat, 0.9, random_state=random_state)
# Get the size of images
img_size = get_image_size(folder)
return X_hat, Y_hat, img_size
def add_noise(self, X_hat: np.ndarray, noise_type: str, noise_level: float, random_state: Union[int, np.random.RandomState, None], reduce: int) -> np.ndarray:
"""
Add noise to the data.
Parameters:
- X_hat (np.ndarray): The data matrix.
- noise_type (str): Type of noise to add to the data.
- noise_level (float): Level of noise to add to the data.
- random_state (Union[int, np.random.RandomState, None]): Random state to use for adding noise.
- reduce (int): Factor by which the image size is reduced for visualization.
Returns:
- X_noise (np.ndarray): The noisy data matrix.
"""
# Set random state and noise adder
noise_adder = NoiseAdder(random_state=random_state)
# Create a dictionary of noise functions
noise_dict = {
'uniform': (noise_adder.add_uniform_noise, {'X_hat': X_hat, 'noise_level': noise_level}),
'gaussian': (noise_adder.add_gaussian_noise, {'X_hat': X_hat, 'noise_level': noise_level}),
'laplacian': (noise_adder.add_laplacian_noise, {'X_hat': X_hat, 'noise_level': noise_level}),
'salt_and_pepper': (noise_adder.add_salt_and_pepper_noise, {'X_hat': X_hat, 'noise_level': noise_level}),
'block': (noise_adder.add_block_noise, {'X_hat': X_hat, 'block_size': noise_level, 'img_width': self.img_size[0]//reduce})
}
# Map the noise type to the noise function
noise_func, args = noise_dict.get(noise_type, (noise_adder.add_uniform_noise, {'X_hat': X_hat, 'noise_level': noise_level}))
# Add noise to the data
_, X_noise = noise_func(**args)
return X_noise
def scale(self, X_hat: np.ndarray, X_noise: np.ndarray, scaler: Union[MinMaxScaler, StandardScaler]) -> Tuple[np.ndarray, np.ndarray]:
"""
Scale the data.
Parameters:
- X_hat (np.ndarray): The data matrix.
- X_noise (np.ndarray): The noisy data matrix.
- scaler (MinMaxScaler or StandardScaler): Scaler to use for scaling the data.
Returns:
- X_hat_scaled (np.ndarray): The scaled data matrix.
- X_noise_scaled (np.ndarray): The scaled noisy data matrix.
"""
# Scale the data
X_hat_scaled = scaler.fit_transform(X_hat)
X_noise_scaled = scaler.transform(X_noise)
# Ensure that the scaled noisy data is non-negative
X_noise_scaled += np.abs(np.min(X_noise_scaled)) * np.abs(np.min(X_noise_scaled)) * int(np.min(X_noise_scaled) < 0)
return X_hat_scaled, X_noise_scaled
class Pipeline(BasicBlock):
def __init__(self, nmf: Union[str, BasicNMF], dataset: str='ORL', reduce: int=1, noise_type: str='uniform',
noise_level: float=0.02, random_state: int=3407, scaler: str='MinMax') -> None:
"""
Initialize the pipeline.
Parameters:
- nmf (str or BasicNMF): Name of the NMF algorithm to use.
- dataset (str): Name of the dataset to use.
- reduce (int): Factor by which the image size is reduced for visualization.
- noise_type (str): Type of noise to add to the data.
- noise_level (float): Level of noise to add to the data.
- random_state (int): Random state to use for the NMF algorithm.
- scaler (str): Name of the scaler to use for scaling the data.
Returns:
None. The function will initialize the pipeline.
"""
# Get the basic information for the pipeline
folder, scaler, self.nmf = self.basic_info(nmf, dataset, scaler)
# Load the data
X_hat, self.__Y_hat, self.img_size = self.load_data(folder, reduce=reduce, random_state=random_state)
# Add noise to the data
X_noise = self.add_noise(X_hat, noise_type, noise_level, random_state, reduce)
# Scale the data
self.__X_hat_scaled, self.__X_noise_scaled = self.scale(X_hat, X_noise, scaler)
self.reduce = reduce
self.random_state = random_state
# Delete the attributes that might occupy significant memory
del X_hat, X_noise, folder, scaler, noise_type, noise_level, random_state, dataset, reduce, nmf
def execute(self, max_iter: int, convergence_trend: bool=False, matrix_size: bool=False, verbose: bool=False) -> None:
"""
Run the pipeline.
Parameters:
- max_iter (int): Maximum number of iterations to run the NMF algorithm.
- convergence_trend (bool): Whether to display the convergence trend of the NMF algorithm.
- matrix_size (bool): Whether to display the size of the basis and coefficient matrices.
- verbose (bool): Whether to display the verbose output of the NMF algorithm.
"""
# Run NMF
self.nmf.fit(self.__X_noise_scaled, len(set(self.__Y_hat)), max_iter=max_iter,
random_state=self.random_state, imshow=convergence_trend, verbose=verbose)
# Get the dictionary and representation matrices
self.D, self.R = self.nmf.D, self.nmf.R
if matrix_size:
print('D.shape={}, R.shape={}'.format(self.D.shape, self.R.shape))
self.metrics = self.nmf.evaluate(self.__X_hat_scaled, self.__Y_hat, random_state=self.random_state)
return self.metrics
def evaluate(self, idx: int=2, imshow: bool=False) -> None:
"""
Evaluate the NMF algorithm.
Parameters:
- idx (int): Index of the image to evaluate.
- imshow (bool): Whether to display the images.
"""
evaluate(self.nmf, self.metrics, self.__X_hat_scaled, self.__X_noise_scaled,
self.img_size, self.reduce, idx, imshow)
def visualization(self, idx: int=2) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Visualize the NMF algorithm.
Parameters:
- idx (int): Index of the image to visualize.
Returns:
- X_i (np.ndarray): The original image.
- X_noise_i (np.ndarray): The noisy image.
- DR_i (np.ndarray): The reconstructed image.
"""
DR = np.dot(self.D, self.R).reshape(self.__X_hat_scaled.shape[0], self.__X_hat_scaled.shape[1])
# Calculate reduced image size based on the 'reduce' factor
img_size = [i//self.reduce for i in self.img_size]
# Retrieve the specified image from the data
X_i = self.__X_hat_scaled[:,idx].reshape(img_size[1],img_size[0])
X_noise_i = self.__X_noise_scaled[:,idx].reshape(img_size[1],img_size[0])
DR_i = DR[:,idx].reshape(img_size[1],img_size[0])
return X_i, X_noise_i, DR_i
def cleanup(self) -> None:
"""
Cleanup method to release resources and delete instances.
"""
# Delete attributes that might occupy significant memory
if hasattr(self, 'nmf'):
del self.nmf, self.__X_hat_scaled, self.__X_noise_scaled, self.D, self.R, self.metrics
class Experiment:
"""
Set up the experiment.
"""
data_dirs = ['data/ORL', 'data/CroppedYaleB']
data_container = [[], []]
noises = {
'uniform': [0.1, 0.3],
'gaussian': [0.05, 0.08],
'laplacian': [0.04, 0.06],
'salt_and_pepper': [0.02, 0.1],
'block': [10, 15],}
nmf_dict = {
'L2NormNMF': L2NormNMF,
'KLDivergenceNMF': KLDivergenceNMF,
'ISDivergenceNMF': ISDivergenceNMF,
'L21NormNMF': L21NormNMF,
'HSCostNMF': HSCostNMF,
'L1NormRegularizedNMF': L1NormRegularizedNMF,
'CappedNormNMF': CappedNormNMF,
'CauchyNMF': CauchyNMF,}
def __init__(self,
seeds: List[int]=None) -> None:
"""
Initialize the experiment.
Parameters:
- seeds (List[int]): Random seeds to use for the experiment.
"""
self.seeds = [0, 42, 99, 512, 3407] if seeds is None else seeds
def choose(self, nmf: Union[str, BasicNMF]) -> None:
"""
Choose an NMF algorithm. Essentially, this method sets the NMF algorithm to use for the experiment.
nmf (Union[str, BasicNMF]): NMF algorithm to use.
"""
if isinstance(nmf, BasicNMF):
self.nmf = nmf
else:
# Choose an NMF algorithm
self.nmf = self.nmf_dict.get(nmf, L1NormRegularizedNMF)()
def data_loader(self) -> Generator[Tuple[str, int, np.ndarray, np.ndarray, np.ndarray, str, float], None, None]:
"""
Construct a generator to load the data.
Returns:
- data_file (str): Name of the dataset.
- seed (int): Random seed to use for the experiment.
- X_hat_scaled (np.ndarray): The scaled data matrix.
- Y_hat (np.ndarray): The label matrix.
- X_noise_scaled (np.ndarray): The scaled noisy data matrix.
- noise_type (str): Type of noise to add to the data.
- noise_level (float): Level of noise to add to the data.
"""
scaler = MinMaxScaler()
# Data file loop
for data_file in self.data_dirs:
reduce = 1 if data_file.endswith('ORL') else 3
image_size = get_image_size(data_file)
X_hat_, Y_hat_ = load_data(root=data_file, reduce=reduce)
# Random seed loop
for seed in self.seeds:
noise_adder = NoiseAdder(random_state=seed)
X_hat, Y_hat = random_sample(X_hat_, Y_hat_, 0.9, random_state=seed)
X_hat_scaled = scaler.fit_transform(X_hat)
# Noise type loop
for noise_type in self.noises:
add_noise_ = getattr(noise_adder, f'add_{noise_type}_noise')
# Noise level loop
for noise_level in self.noises[noise_type]:
_, X_noise = add_noise_(X_hat, noise_level=noise_level) if noise_type != 'block' else add_noise_(X_hat, image_size[0]//reduce, noise_level)
X_noise_scaled = scaler.transform(X_noise)
X_noise_scaled += np.abs(np.min(X_noise_scaled)) * np.abs(np.min(X_noise_scaled)) * int(np.min(X_noise_scaled) < 0)
yield data_file.split("/")[-1], seed, X_hat_scaled, Y_hat, X_noise_scaled, noise_type, noise_level
def sync_fit(self, dataset: str, seed: int, X_hat_scaled: np.ndarray, Y_hat: np.ndarray, X_noise_scaled: np.ndarray, noise_type: str, noise_level: float) -> Tuple[str, str, float, int, float, float, float]:
"""
Fit the NMF algorithm on the dataset with noise synchronously.
Parameters:
- dataset (str): Name of the dataset.
- seed (int): Random seed to use for the experiment.
- X_hat_scaled (np.ndarray): The scaled data matrix.
- Y_hat (np.ndarray): The label matrix.
- X_noise_scaled (np.ndarray): The scaled noisy data matrix.
- noise_type (str): Type of noise to add to the data.
- noise_level (float): Level of noise to add to the data.
Returns:
- dataset (str): Name of the dataset.
- noise_type (str): Type of noise to add to the data.
- noise_level (float): Level of noise to add to the data.
- seed (int): Random seed to use for the experiment.
- rmse (float): Root mean squared error of the NMF algorithm.
- acc (float): Accuracy of the NMF algorithm.
- nmi (float): Normalized mutual information of the NMF algorithm.
"""
self.nmf.fit(X_noise_scaled, len(set(Y_hat)), random_state=seed, verbose=False)
# Display the current experiment information
logging.info(f'Dataset: {dataset} Random seed: {seed} - Test on {noise_type} with {noise_level} ended.')
return dataset, noise_type, noise_level, seed, *self.nmf.evaluate(X_hat_scaled, Y_hat, random_state=seed)
def execute(self) -> None:
"""
Execute the experiments.
"""
# Lazy import to avoid multiprocessing error
import multiprocessing
results = []
# Define the multiprocessing pool
with multiprocessing.Pool(10) as pool:
for result in pool.starmap(self.sync_fit, self.data_loader()):
# Append the result to the list
results.append(result)
# Write the results to a csv file
if not os.path.exists(f'{self.nmf.name}_log.csv'):
mode = 'w'
else:
mode = 'a'
with open(f'{self.nmf.name}_log.csv', mode) as f:
writer = csv.writer(f)
if mode == 'w':
writer.writerow(['dataset', 'noise_type', 'noise_level', 'seed', 'rmse', 'acc', 'nmi'])
for result in results:
writer.writerow(result)