XavierSpycy
First commit
bd67cfe
import numpy as np
import matplotlib.pyplot as plt
def origin_plus_noise(X_hat: np.ndarray, X_noise: np.ndarray, X: np.ndarray, image_size: tuple, reduce: int, idx: int=2) -> None:
"""
Display the original image, the noise, and the image with added noise side by side.
Parameters:
- X_hat (numpy.ndarray): Original image data.
- X_noise (numpy.ndarray): Noise data to be added to the original image.
- image_size (tuple): Size of the original image as (height, width).
- reduce (int): Factor to downscale the image dimensions.
- idx (int, optional): Index of the image to be displayed. Default is 2.
"""
# Calculate reduced image size based on the 'reduce' factor
img_size = [i//reduce for i in image_size]
# Retrieve the specified image from the data
X_hat_i = X_hat[:,idx].reshape(img_size[1],img_size[0])
X_noise_i = X_noise[:,idx].reshape(img_size[1],img_size[0])
X_i = X[:,idx].reshape(img_size[1],img_size[0])
# Set up the figure for displaying images
plt.figure(figsize=(12,3)) # Adjusted size for better visualization
# Display the original image
plt.subplot(151) # Adjusted to 1x4 grid for space to '+' and '=' symbols
plt.imshow(X_hat_i, cmap=plt.cm.gray)
plt.title('Image(Original)')
plt.axis('off') # Hide axis for a cleaner look
# Place '+' symbol between images
plt.subplot(152)
plt.text(0.5, 0.5, '+', fontsize=20, ha='center', va='center')
plt.axis('off') # Hide axis
# Display the noise
plt.subplot(153)
plt.imshow(X_noise_i, cmap=plt.cm.gray)
plt.title('Noise')
plt.axis('off') # Hide axis for a cleaner look
# Place '=' symbol between images
plt.subplot(154)
plt.text(0.5, 0.5, '=', fontsize=20, ha='center', va='center')
plt.axis('off') # Hide axis
# Display the image with added noise
plt.subplot(155)
plt.imshow(X_i, cmap=plt.cm.gray)
plt.title('Image(Noise)')
plt.axis('off') # Hide axis for a cleaner look
# Render the figure
plt.tight_layout() # Ensure no overlap between subplots
plt.show()
def origin_versus_dictrep(X: np.ndarray, D: np.ndarray, R: np.ndarray, X_noise: np.ndarray, image_size: tuple, reduce: int, idx: int) -> None:
"""
Display the original, noise-added, and dictionary-reconstructed images side by side.
Parameters:
- X (numpy.ndarray): Original data matrix of shape (n_samples, n_features).
- D (numpy.ndarray): Basis matrix obtained from dictionary learning.
- R (numpy.ndarray): Coefficient matrix.
- X_noise (numpy.ndarray): Noise-added version of the original data matrix.
- image_size (tuple): Tuple containing the height and width of the image.
- reduce (int): Factor by which the image size is reduced for visualization.
- idx (int): Index of the image to display.
Returns:
None. The function will plot and display the images using matplotlib.
"""
DR = np.dot(D, R).reshape(X.shape[0], X.shape[1])
# Calculate reduced image size based on the 'reduce' factor
img_size = [i//reduce for i in image_size]
# Retrieve the specified image from the data
X_i = X[:,idx].reshape(img_size[1],img_size[0])
X_noise_i = X_noise[:,idx].reshape(img_size[1],img_size[0])
DR_i = DR[:,idx].reshape(img_size[1],img_size[0])
# Set up the figure for displaying images
plt.figure(figsize=(12,3)) # Adjusted size for better visualization
# Display the original image
plt.subplot(131)
plt.imshow(X_i, cmap=plt.cm.gray)
plt.title('Image(Original)')
plt.axis('off')
# Display the reconstructed image
plt.subplot(132)
plt.imshow(X_noise_i, cmap=plt.cm.gray)
plt.title('Image(Noise)')
plt.axis('off')
# Display the sparse coefficients
plt.subplot(133)
plt.imshow(DR_i, cmap=plt.cm.gray)
plt.title('Image(Reconstructed))')
plt.axis('off')
# Render the figure
plt.tight_layout()
plt.show()
return X_i, X_noise_i, DR_i
def origin_noise_dictrep(X: np.ndarray, X_noise: np.ndarray, D: np.ndarray, R: np.ndarray, image_size: tuple, reduce: int, idx: int) -> None:
"""
Display the original image, its noise version, and its dictionary-reconstructed representation side by side.
Parameters:
- X (numpy.ndarray): Original data matrix of shape (n_samples, n_features).
- X_noise (numpy.ndarray): Noise-added version of the original data matrix.
- D (numpy.ndarray): Basis matrix obtained from dictionary learning.
- R (numpy.ndarray): Coefficient matrix.
- image_size (tuple): Tuple containing the height and width of the image.
- reduce (int): Factor by which the image size is reduced for visualization.
- idx (int): Index of the image to display.
Returns:
None. The function will plot and display the images using matplotlib.
"""
DR = np.dot(D, R).reshape(X.shape[0], X.shape[1])
# Calculate reduced image size based on the 'reduce' factor
img_size = [i//reduce for i in image_size]
# Retrieve the specified image from the data
X_i = X[:,idx].reshape(img_size[1],img_size[0])
X_noise_i = X_noise[:,idx].reshape(img_size[1],img_size[0])
DR_i = DR[:,idx].reshape(img_size[1],img_size[0])
# Set up the figure for displaying images
plt.figure(figsize=(12,3)) # Adjusted size for better visualization
# Display the original image
plt.subplot(131)
plt.imshow(X_i, cmap=plt.cm.gray)
plt.title('Image(Original)')
plt.axis('off')
# Display the noise
plt.subplot(132)
plt.imshow(X_noise_i, cmap=plt.cm.gray)
plt.title('Image(Noise)')
plt.axis('off')
# Display the reconstructed image
plt.subplot(133)
plt.imshow(DR_i, cmap=plt.cm.gray)
plt.title('Image(Reconstructed)')
plt.axis('off')
# Render the figure
plt.tight_layout()
plt.show()