Spaces:
Sleeping
Sleeping
import numpy as np | |
import matplotlib.pyplot as plt | |
def origin_plus_noise(X_hat: np.ndarray, X_noise: np.ndarray, X: np.ndarray, image_size: tuple, reduce: int, idx: int=2) -> None: | |
""" | |
Display the original image, the noise, and the image with added noise side by side. | |
Parameters: | |
- X_hat (numpy.ndarray): Original image data. | |
- X_noise (numpy.ndarray): Noise data to be added to the original image. | |
- image_size (tuple): Size of the original image as (height, width). | |
- reduce (int): Factor to downscale the image dimensions. | |
- idx (int, optional): Index of the image to be displayed. Default is 2. | |
""" | |
# Calculate reduced image size based on the 'reduce' factor | |
img_size = [i//reduce for i in image_size] | |
# Retrieve the specified image from the data | |
X_hat_i = X_hat[:,idx].reshape(img_size[1],img_size[0]) | |
X_noise_i = X_noise[:,idx].reshape(img_size[1],img_size[0]) | |
X_i = X[:,idx].reshape(img_size[1],img_size[0]) | |
# Set up the figure for displaying images | |
plt.figure(figsize=(12,3)) # Adjusted size for better visualization | |
# Display the original image | |
plt.subplot(151) # Adjusted to 1x4 grid for space to '+' and '=' symbols | |
plt.imshow(X_hat_i, cmap=plt.cm.gray) | |
plt.title('Image(Original)') | |
plt.axis('off') # Hide axis for a cleaner look | |
# Place '+' symbol between images | |
plt.subplot(152) | |
plt.text(0.5, 0.5, '+', fontsize=20, ha='center', va='center') | |
plt.axis('off') # Hide axis | |
# Display the noise | |
plt.subplot(153) | |
plt.imshow(X_noise_i, cmap=plt.cm.gray) | |
plt.title('Noise') | |
plt.axis('off') # Hide axis for a cleaner look | |
# Place '=' symbol between images | |
plt.subplot(154) | |
plt.text(0.5, 0.5, '=', fontsize=20, ha='center', va='center') | |
plt.axis('off') # Hide axis | |
# Display the image with added noise | |
plt.subplot(155) | |
plt.imshow(X_i, cmap=plt.cm.gray) | |
plt.title('Image(Noise)') | |
plt.axis('off') # Hide axis for a cleaner look | |
# Render the figure | |
plt.tight_layout() # Ensure no overlap between subplots | |
plt.show() | |
def origin_versus_dictrep(X: np.ndarray, D: np.ndarray, R: np.ndarray, X_noise: np.ndarray, image_size: tuple, reduce: int, idx: int) -> None: | |
""" | |
Display the original, noise-added, and dictionary-reconstructed images side by side. | |
Parameters: | |
- X (numpy.ndarray): Original data matrix of shape (n_samples, n_features). | |
- D (numpy.ndarray): Basis matrix obtained from dictionary learning. | |
- R (numpy.ndarray): Coefficient matrix. | |
- X_noise (numpy.ndarray): Noise-added version of the original data matrix. | |
- image_size (tuple): Tuple containing the height and width of the image. | |
- reduce (int): Factor by which the image size is reduced for visualization. | |
- idx (int): Index of the image to display. | |
Returns: | |
None. The function will plot and display the images using matplotlib. | |
""" | |
DR = np.dot(D, R).reshape(X.shape[0], X.shape[1]) | |
# Calculate reduced image size based on the 'reduce' factor | |
img_size = [i//reduce for i in image_size] | |
# Retrieve the specified image from the data | |
X_i = X[:,idx].reshape(img_size[1],img_size[0]) | |
X_noise_i = X_noise[:,idx].reshape(img_size[1],img_size[0]) | |
DR_i = DR[:,idx].reshape(img_size[1],img_size[0]) | |
# Set up the figure for displaying images | |
plt.figure(figsize=(12,3)) # Adjusted size for better visualization | |
# Display the original image | |
plt.subplot(131) | |
plt.imshow(X_i, cmap=plt.cm.gray) | |
plt.title('Image(Original)') | |
plt.axis('off') | |
# Display the reconstructed image | |
plt.subplot(132) | |
plt.imshow(X_noise_i, cmap=plt.cm.gray) | |
plt.title('Image(Noise)') | |
plt.axis('off') | |
# Display the sparse coefficients | |
plt.subplot(133) | |
plt.imshow(DR_i, cmap=plt.cm.gray) | |
plt.title('Image(Reconstructed))') | |
plt.axis('off') | |
# Render the figure | |
plt.tight_layout() | |
plt.show() | |
return X_i, X_noise_i, DR_i | |
def origin_noise_dictrep(X: np.ndarray, X_noise: np.ndarray, D: np.ndarray, R: np.ndarray, image_size: tuple, reduce: int, idx: int) -> None: | |
""" | |
Display the original image, its noise version, and its dictionary-reconstructed representation side by side. | |
Parameters: | |
- X (numpy.ndarray): Original data matrix of shape (n_samples, n_features). | |
- X_noise (numpy.ndarray): Noise-added version of the original data matrix. | |
- D (numpy.ndarray): Basis matrix obtained from dictionary learning. | |
- R (numpy.ndarray): Coefficient matrix. | |
- image_size (tuple): Tuple containing the height and width of the image. | |
- reduce (int): Factor by which the image size is reduced for visualization. | |
- idx (int): Index of the image to display. | |
Returns: | |
None. The function will plot and display the images using matplotlib. | |
""" | |
DR = np.dot(D, R).reshape(X.shape[0], X.shape[1]) | |
# Calculate reduced image size based on the 'reduce' factor | |
img_size = [i//reduce for i in image_size] | |
# Retrieve the specified image from the data | |
X_i = X[:,idx].reshape(img_size[1],img_size[0]) | |
X_noise_i = X_noise[:,idx].reshape(img_size[1],img_size[0]) | |
DR_i = DR[:,idx].reshape(img_size[1],img_size[0]) | |
# Set up the figure for displaying images | |
plt.figure(figsize=(12,3)) # Adjusted size for better visualization | |
# Display the original image | |
plt.subplot(131) | |
plt.imshow(X_i, cmap=plt.cm.gray) | |
plt.title('Image(Original)') | |
plt.axis('off') | |
# Display the noise | |
plt.subplot(132) | |
plt.imshow(X_noise_i, cmap=plt.cm.gray) | |
plt.title('Image(Noise)') | |
plt.axis('off') | |
# Display the reconstructed image | |
plt.subplot(133) | |
plt.imshow(DR_i, cmap=plt.cm.gray) | |
plt.title('Image(Reconstructed)') | |
plt.axis('off') | |
# Render the figure | |
plt.tight_layout() | |
plt.show() |