File size: 2,667 Bytes
6fff1ff
 
 
 
 
 
 
 
ed0de95
6fff1ff
ed0de95
 
6fff1ff
 
6b38066
 
6fff1ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e1a659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fff1ff
 
 
 
 
9e1a659
6fff1ff
 
 
 
 
 
 
9e1a659
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import gradio as gr
import numpy as np
from PIL import Image
from openai import OpenAI
import os
import base64
import io

 
client = OpenAI(
    api_key=os.getenv('API_KEY'),
    base_url=os.getenv('API_BASE'))

MODELS = [
 
    "google/gemini-flash-1.5"
]

def encode_image(image):
    buffered = io.BytesIO()
    image.save(buffered, format="PNG")
    return base64.b64encode(buffered.getvalue()).decode('utf-8')

def analyze_label(image, model):
    if image is None:
        return "Please upload an image of a product label, food item, or menu."

    image.thumbnail((1024, 1024), Image.LANCZOS)
    base64_image = encode_image(image)

    try:
        response = client.chat.completions.create(
            model=model,
            messages=[{
                "role": "user",
                "content": [
                    {"type": "text", "text": "Analyze this image of a product label, food item, or menu. Provide a simple description of the product and its nutritional information, (for images of food / fruits / dishes / always give approximate calorie values in number with disclaimer that it's generic and it may vary), consider user as if talking to someone with no nutritional background."},
                    {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}
                ]
            }],
            max_tokens=1000,
            temperature=0.01
        )
        return response.choices[0].message.content
    except Exception as e:
        return f"Error analyzing image: {str(e)}"

# Define example images
example_images = [
    'images (1).png',
    'images (2).png',
    'images (3).png',
    'images (4).png',
    'images (5).png',
    'images (6).png',
    'images (7).png',
    'images (8).png',
    'images (9).png',
    'images (10).png',
    'images (11).png',
    'images (12).png'
]

iface = gr.Interface(
    fn=analyze_label,
    inputs=[
        gr.Image(type="pil", label="Upload a picture of a product label, food item, or menu"),
        gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[0])
    ],
    outputs=gr.Textbox(label="Analysis"),
    title="๐Ÿ Sehat GPT ๐Ÿฅฆ",
    description="Sehat GPT: Your AI nutritionist, inspired by the Label Padhega India campaign. ๐Ÿค–๐Ÿฅ— Upload food images for instant nutrition insights and make informed dietary choices. Empowering you to read labels, understand nutrition, and lead a healthier life! ๐Ÿ’ช๐ŸŽ Join the movement to promote food literacy and consumer awareness across India. ๐Ÿ‡ฎ๐Ÿ‡ณ",
    examples=[[img, MODELS[0]] for img in example_images]
)

# For Gradio spaces, we use this to launch the interface
iface.launch()