Xhaheen commited on
Commit
f150cd0
·
0 Parent(s):

Duplicate from Xhaheen/meme_world

Browse files
.gitattributes ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ftz filter=lfs diff=lfs merge=lfs -text
6
+ *.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.h5 filter=lfs diff=lfs merge=lfs -text
8
+ *.joblib filter=lfs diff=lfs merge=lfs -text
9
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
10
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.npy filter=lfs diff=lfs merge=lfs -text
14
+ *.npz filter=lfs diff=lfs merge=lfs -text
15
+ *.onnx filter=lfs diff=lfs merge=lfs -text
16
+ *.ot filter=lfs diff=lfs merge=lfs -text
17
+ *.parquet filter=lfs diff=lfs merge=lfs -text
18
+ *.pb filter=lfs diff=lfs merge=lfs -text
19
+ *.pickle filter=lfs diff=lfs merge=lfs -text
20
+ *.pkl filter=lfs diff=lfs merge=lfs -text
21
+ *.pt filter=lfs diff=lfs merge=lfs -text
22
+ *.pth filter=lfs diff=lfs merge=lfs -text
23
+ *.rar filter=lfs diff=lfs merge=lfs -text
24
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
25
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
26
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
27
+ *.tflite filter=lfs diff=lfs merge=lfs -text
28
+ *.tgz filter=lfs diff=lfs merge=lfs -text
29
+ *.wasm filter=lfs diff=lfs merge=lfs -text
30
+ *.xz filter=lfs diff=lfs merge=lfs -text
31
+ *.zip filter=lfs diff=lfs merge=lfs -text
32
+ *.zst filter=lfs diff=lfs merge=lfs -text
33
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Meme World
3
+ emoji: 📚
4
+ colorFrom: green
5
+ colorTo: pink
6
+ sdk: gradio
7
+ sdk_version: 3.6
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ duplicated_from: Xhaheen/meme_world
12
+ ---
13
+
14
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
a boy is running with a soccer ball .png ADDED
a cat sitting on a desk next to a computer .png ADDED
a cat sitting on a table with a cake .png ADDED
a chair .png RENAMED
File without changes
a woman standing next to each other .png RENAMED
File without changes
jeans jumping a skateboard .png RENAMED
File without changes
tie .png RENAMED
File without changes
tie sitting at a desk .png RENAMED
File without changes
a man is using a laptop computer (2).png ADDED
a man is using a laptop computer .png ADDED
a man sitting at a table with a bottle of beer .png ADDED
a man sitting in a chair with a computer .png ADDED
a man sitting on a bench with a laptop .png ADDED
a woman sitting in front of a laptop computer .png ADDED
a young boy is smiling while using a laptop .png ADDED
a young boy sitting on the grass next to a lake .png ADDED
app.py ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # # %%bash
2
+
3
+ # # # git lfs install
4
+ # # # git clone https://huggingface.co/spaces/Xhaheen/meme_world
5
+
6
+
7
+ # # # pip install -r /content/meme_world/requirements.txt
8
+ # # # pip install gradio
9
+ # # cd /meme_world
10
+
11
+
12
+ # import torch
13
+ # import re
14
+ # import gradio as gr
15
+ # from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
16
+ # import cohere
17
+ # import os
18
+ # #
19
+ # # os.environ['key_srkian'] = ''
20
+ # key_srkian = os.environ["key_srkian"]
21
+ # co = cohere.Client(key_srkian)#srkian
22
+ # device='cpu'
23
+ # encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
24
+ # decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
25
+ # model_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
26
+ # feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
27
+ # tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
28
+ # model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device)
29
+
30
+
31
+ # def predict(department,image,max_length=64, num_beams=4):
32
+ # image = image.convert('RGB')
33
+ # image = feature_extractor(image, return_tensors="pt").pixel_values.to(device)
34
+ # clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0]
35
+ # caption_ids = model.generate(image, max_length = max_length)[0]
36
+ # caption_text = clean_text(tokenizer.decode(caption_ids))
37
+ # dept=department
38
+ # context= caption_text
39
+ # response = co.generate(
40
+ # model='large',
41
+ # prompt=f'create non offensive one line meme for given department and context\n\ndepartment- data science\ncontext-a man sitting on a bench with a laptop\nmeme- \"I\'m not a data scientist, but I play one on my laptop.\"\n\ndepartment-startup\ncontext-a young boy is smiling while using a laptop\nmeme-\"When your startup gets funded and you can finally afford a new laptop\"\n\ndepartment- {dept}\ncontext-{context}\nmeme-',
42
+ # max_tokens=20,
43
+ # temperature=0.8,
44
+ # k=0,
45
+ # p=0.75,
46
+ # frequency_penalty=0,
47
+ # presence_penalty=0,
48
+ # stop_sequences=["department"],
49
+ # return_likelihoods='NONE')
50
+ # reponse=response.generations[0].text
51
+ # reponse = reponse.replace("department", "")
52
+ # Feedback_SQL="DEPT"+dept+"CAPT"+caption_text+"MAMAY"+reponse
53
+
54
+
55
+ # return reponse
56
+
57
+
58
+
59
+ # # input = gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True)
60
+
61
+
62
+
63
+ # output = gr.outputs.Textbox(type="text",label="Meme")
64
+ # #examples = [f"example{i}.jpg" for i in range(1,7)]
65
+ # #examples = os.listdir()
66
+ # examples = [f"example{i}.png" for i in range(1,7)]
67
+
68
+ # #examples=os.listdir()
69
+ # #for fichier in examples:
70
+ # # if not(fichier.endswith(".png")):
71
+ # # examples.remove(fichier)
72
+
73
+ # description= " Looking for a fun and easy way to generate memes? Look no further than Meme world! Leveraging large language models like GPT-3PT-3 / Ai21 / Cohere, you can create memes that are sure to be a hit with your friends or network. Created with ♥️ by Arsalan @[Xaheen](https://www.linkedin.com/in/sallu-mandya/). kindly share your thoughts in discussion session and use the app responsibly #NO_Offense \n \n built with ❤️ @[Xhaheen](https://www.linkedin.com/in/sallu-mandya/)"
74
+ # title = "Meme world 🖼️"
75
+ # dropdown=["data science", "product management","marketing","startup" ,"agile","crypto" , "SEO" ]
76
+
77
+ # article = "Created By : Xaheen "
78
+
79
+ # interface = gr.Interface(
80
+ # fn=predict,
81
+ # inputs = [gr.inputs.Dropdown(dropdown),gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True)],
82
+
83
+ # theme="grass",
84
+ # outputs=output,
85
+ # examples =[['data science', 'example5.png'],
86
+ # ['product management', 'example2.png'],
87
+ # ['startup', 'example3.png'],
88
+ # ['marketing', 'example4.png'],
89
+ # ['agile', 'example1.png'],
90
+ # ['crypto', 'example6.png']],
91
+ # title=title,
92
+ # description=description,
93
+ # article = article,
94
+ # )
95
+ # interface.launch(debug=True)
96
+
97
+
98
+
99
+
100
+
101
+
102
+
103
+
104
+
105
+
106
+
107
+ # Step 2: Set up the Gradio interface and import necessary packages
108
+ import gradio as gr
109
+ import openai
110
+ from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
111
+ import torch
112
+ from PIL import Image
113
+
114
+ # Step 3: Load the provided image captioning model
115
+ model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
116
+ feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
117
+ tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
118
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
119
+ model.to(device)
120
+
121
+ # Step 4: Create a function to generate captions from images
122
+ max_length = 16
123
+ num_beams = 4
124
+ gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
125
+
126
+ def generate_caption(image):
127
+ image = Image.fromarray(image.astype('uint8'), 'RGB')
128
+ if image.mode != "RGB":
129
+ image = image.convert(mode="RGB")
130
+ pixel_values = feature_extractor(images=[image], return_tensors="pt").pixel_values
131
+ pixel_values = pixel_values.to(device)
132
+ output_ids = model.generate(pixel_values, **gen_kwargs)
133
+ caption = tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()
134
+ return caption
135
+
136
+
137
+ # Step 5: Create a function to generate memes using the GPT-3 API
138
+ def generate_meme(caption, department):
139
+ openai.api_key = os.environ["key"]
140
+ prompt = f"Create a non-offensive meme caption for the following image description in the context of {department} department: {caption}"
141
+ response = openai.Completion.create(engine="text-davinci-002", prompt=prompt, max_tokens=50, n=1, stop=None, temperature=0.7)
142
+ meme_caption = response.choices[0].text.strip()
143
+ return meme_caption
144
+
145
+ # Step 6: Define the main meme generation function
146
+ def meme_generator(image, department):
147
+ caption = generate_caption(image)
148
+ meme_caption = generate_meme(caption, department)
149
+ return meme_caption
150
+
151
+ examples = [f"example{i}.png" for i in range(1,7)]
152
+
153
+ # Step 7: Launch the Gradio application
154
+ image_input = gr.inputs.Image()
155
+ department_input = gr.inputs.Dropdown(choices=["data science", "product management","marketing","startup" ,"agile","crypto" , "SEO" ])
156
+ output_text = gr.outputs.Textbox()
157
+
158
+ gr.Interface(fn=meme_generator, inputs=[image_input, department_input], outputs=output_text, title="Meme world!",description= " Looking for a fun and easy way to generate memes? Look no further than Meme world! Leveraging large language models like GPT-3PT-3 / Ai21 / Cohere, you can create memes that are sure to be a hit with your friends or network. Created with ♥️ by Arsalan @[Xaheen](https://www.linkedin.com/in/sallu-mandya/). kindly share your thoughts in discussion session and use the app responsibly #NO_Offense \n \n built with ❤️ @[Xhaheen](https://www.linkedin.com/in/sallu-mandya/)", theme="grass",
159
+
160
+ examples =[['example5.png','data science' ],
161
+ ['example2.png','product management'],
162
+ ['example3.png','startup'],
163
+ ['example4.png','marketing'],
164
+ ['example1.png','agile'],
165
+ ['example6.png','crypto']]).launch(debug=True)
166
+
167
+
168
+
169
+
170
+
171
+
172
+
173
+
174
+
175
+
176
+
arial.ttf ADDED
Binary file (367 kB). View file
 
example1.png ADDED
example2.png ADDED
example3.png ADDED
example4.png ADDED
example5.png ADDED
example6.png ADDED
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ transformers
2
+ torch
3
+ cohere
4
+ openai
5
+ Pillow