Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
from sklearn.model_selection import train_test_split | |
from sklearn.pipeline import Pipeline | |
from sklearn.preprocessing import StandardScaler, OneHotEncoder | |
from sklearn.compose import ColumnTransformer | |
from sklearn.neighbors import KNeighborsClassifier | |
from sklearn.metrics import accuracy_score | |
# Load your data (replace with your actual data loading) | |
penguins = pd.read_csv('penguins_lter.csv') | |
# Data Cleaning (same as your existing code) | |
penguins_cleaned = penguins.dropna() | |
penguins_cleaned = penguins_cleaned.drop_duplicates() | |
# Fill missing values (same as your existing code) | |
numerical_cols = penguins.select_dtypes(include=['number']).columns | |
penguins[numerical_cols] = penguins[numerical_cols].fillna(penguins[numerical_cols].mean()) | |
categorical_cols = penguins.select_dtypes(include=['object']).columns | |
penguins[categorical_cols] = penguins[categorical_cols].fillna(penguins[categorical_cols].mode().iloc[0]) | |
# Feature Engineering and Model Training (same as your existing code) | |
X = penguins.drop('Species', axis=1) | |
y = penguins['Species'] | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) | |
numerical_features = ['Culmen Length (mm)', 'Culmen Depth (mm)', 'Flipper Length (mm)', 'Body Mass (g)'] | |
categorical_features = ['Island', 'Sex'] | |
numerical_transformer = Pipeline(steps=[('scaler', StandardScaler())]) | |
categorical_transformer = Pipeline(steps=[('onehot', OneHotEncoder(handle_unknown='ignore'))]) | |
preprocessor = ColumnTransformer( | |
transformers=[ | |
('num', numerical_transformer, numerical_features), | |
('cat', categorical_transformer, categorical_features) | |
]) | |
pipeline = Pipeline(steps=[ | |
('preprocessor', preprocessor), | |
('classifier', KNeighborsClassifier()) | |
]) | |
pipeline.fit(X_train, y_train) | |
y_pred = pipeline.predict(X_test) | |
accuracy = accuracy_score(y_test, y_pred) | |
# Streamlit App | |
st.title("Penguin Species Classification") | |
st.write("This app predicts the species of a penguin based on its features.") | |
# Display the accuracy | |
st.write(f"Model Accuracy: {accuracy}") | |
# Input features for prediction | |
culmen_length = st.number_input("Culmen Length (mm)", min_value=0.0) | |
culmen_depth = st.number_input("Culmen Depth (mm)", min_value=0.0) | |
flipper_length = st.number_input("Flipper Length (mm)", min_value=0.0) | |
body_mass = st.number_input("Body Mass (g)", min_value=0.0) | |
island = st.selectbox("Island", penguins['Island'].unique()) | |
sex = st.selectbox("Sex", penguins['Sex'].unique()) | |
# Create a DataFrame for prediction | |
new_penguin = pd.DataFrame({ | |
'Culmen Length (mm)': [culmen_length], | |
'Culmen Depth (mm)': [culmen_depth], | |
'Flipper Length (mm)': [flipper_length], | |
'Body Mass (g)': [body_mass], | |
'Island': [island], | |
'Sex': [sex] | |
}) | |
# Make prediction | |
if st.button("Predict Species"): | |
prediction = pipeline.predict(new_penguin) | |
st.write(f"Predicted Species: {prediction[0]}") | |