|
import streamlit as st |
|
import pandas as pd |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.preprocessing import StandardScaler |
|
from sklearn.linear_model import LogisticRegression |
|
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix |
|
|
|
|
|
df = pd.read_csv('iris.csv') |
|
|
|
|
|
X = df.drop('species', axis=1) |
|
y = df['species'] |
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) |
|
|
|
scaler = StandardScaler() |
|
X_train = scaler.fit_transform(X_train) |
|
X_test = scaler.transform(X_test) |
|
|
|
|
|
logreg = LogisticRegression() |
|
logreg.fit(X_train, y_train) |
|
|
|
|
|
|
|
st.title("Iris Flower Classification") |
|
|
|
st.write("Input the features of the iris flower below:") |
|
sepal_length = st.number_input("Sepal Length (cm)", value=5.1) |
|
sepal_width = st.number_input("Sepal Width (cm)", value=3.5) |
|
petal_length = st.number_input("Petal Length (cm)", value=1.4) |
|
petal_width = st.number_input("Petal Width (cm)", value=0.2) |
|
|
|
|
|
if st.button("Predict"): |
|
input_data = [[sepal_length, sepal_width, petal_length, petal_width]] |
|
input_data = scaler.transform(input_data) |
|
prediction = logreg.predict(input_data)[0] |
|
st.write(f"Predicted Species: {prediction}") |
|
|