Spaces:
Runtime error
Runtime error
wxl
commited on
Commit
•
93bde9f
1
Parent(s):
4150f51
add get bev for front view image
Browse files- app.py +101 -4
- figure/exp1.jpg +0 -0
- models/utils/__pycache__/torch_geometry.cpython-38.pyc +0 -0
- models/utils/torch_geometry.py +496 -0
app.py
CHANGED
@@ -1,7 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import scipy.io as io
|
4 |
+
import numpy as np
|
5 |
+
import warnings
|
6 |
+
import torch.nn.functional as F
|
7 |
import gradio as gr
|
8 |
+
import torchgeometry as tgm
|
9 |
+
from models.utils.torch_geometry import get_perspective_transform, warp_perspective
|
10 |
|
11 |
+
warnings.filterwarnings("ignore")
|
|
|
12 |
|
13 |
+
def get_BEV_kitti(front_img, fov, pitch, scale, out_size):
|
14 |
+
Hp, Wp = front_img.shape[:2]
|
15 |
+
|
16 |
+
Wo,Ho = int(Wp*scale),int(Wp*scale)
|
17 |
+
|
18 |
+
fov = fov *torch.pi/180 #
|
19 |
+
theta = pitch*torch.pi/180 # Camera pitch angle
|
20 |
+
|
21 |
+
|
22 |
+
f = Hp/2/torch.tan(torch.tensor(fov))
|
23 |
+
phi = torch.pi/2 - fov
|
24 |
+
delta = torch.pi/2+theta - torch.tensor(phi)
|
25 |
+
l = torch.sqrt(f**2+(Hp/2)**2)
|
26 |
+
h = l*torch.sin(delta)
|
27 |
+
f_ = l*torch.cos(delta)
|
28 |
+
|
29 |
+
######################
|
30 |
+
|
31 |
+
frame = torch.from_numpy(front_img).to(device)
|
32 |
+
|
33 |
+
out = torch.zeros((2, 2,2)).to(device)
|
34 |
+
|
35 |
+
y = (torch.ones((2, 2)).to(device).T *(torch.arange(0,Ho, step=Ho-1)).to(device)).T
|
36 |
+
x = torch.ones((2, 2)).to(device) *torch.arange(0, Wo, step=Wo-1).to(device)
|
37 |
+
l0 = torch.ones((2, 2)).to(device)*Ho - y
|
38 |
+
l1 = torch.ones((2, 2)).to(device) * f_+ l0
|
39 |
+
|
40 |
+
f1_0 = torch.arctan(h/l1)
|
41 |
+
f1_1 = torch.ones((2, 2)).to(device)*(torch.pi/2+theta) - f1_0
|
42 |
+
y_ = l0*torch.sin(f1_0)/torch.sin(f1_1)
|
43 |
+
j_p = torch.ones((2, 2)).to(device) * Hp - y_
|
44 |
+
i_p = torch.ones((2, 2)).to(device) * Wp/2 -(f_+torch.sin(torch.tensor(theta))*(torch.ones((2, 2)).to(device)*Hp-j_p))*(Wo/2*torch.ones((2, 2)).to(device)-x)/l1
|
45 |
+
|
46 |
+
out[:,:,0] = i_p.reshape((2, 2))
|
47 |
+
out[:,:,1] = j_p.reshape((2, 2))
|
48 |
+
|
49 |
+
four_point_org = out.permute(2,0,1)
|
50 |
+
four_point_new = torch.stack((x,y), dim = -1).permute(2,0,1)
|
51 |
+
four_point_org = four_point_org.unsqueeze(0).flatten(2).permute(0, 2, 1)
|
52 |
+
four_point_new = four_point_new.unsqueeze(0).flatten(2).permute(0, 2, 1)
|
53 |
+
H = get_perspective_transform(four_point_org, four_point_new)
|
54 |
+
|
55 |
+
scale1,scale2 = out_size/Wo,out_size/Ho
|
56 |
+
T3 = np.array([[scale1, 0, 0], [0, scale2, 0], [0, 0, 1]])
|
57 |
+
Homo = torch.matmul(torch.tensor(T3).unsqueeze(0).to(device).float(), H)
|
58 |
+
BEV = warp_perspective(frame.permute(2,0,1).unsqueeze(0).float(), Homo, (out_size,out_size))
|
59 |
+
|
60 |
+
BEV = BEV[0].cpu().int().permute(1,2,0).numpy().astype(np.uint8)
|
61 |
+
|
62 |
+
return BEV
|
63 |
+
|
64 |
+
@torch.no_grad()
|
65 |
+
def KittiBEV():
|
66 |
+
torch.cuda.empty_cache()
|
67 |
+
|
68 |
+
with gr.Blocks() as demo:
|
69 |
+
gr.Markdown(
|
70 |
+
"""
|
71 |
+
# HC-Net: Fine-Grained Cross-View Geo-Localization Using a Correlation-Aware Homography Estimator
|
72 |
+
## Get BEV from front-view image.
|
73 |
+
""")
|
74 |
+
|
75 |
+
with gr.Row():
|
76 |
+
front_img = gr.Image(label="Front-view Image").style(height=450)
|
77 |
+
BEV_output = gr.Image(label="BEV Image").style(height=450)
|
78 |
+
|
79 |
+
fov = gr.Slider(1,90, value=20, label="FOV")
|
80 |
+
pitch = gr.Slider(-180, 180, value=0, label="Pitch")
|
81 |
+
scale = gr.Slider(1, 10, value=1.0, label="Scale")
|
82 |
+
out_size = gr.Slider(500, 1000, value=500, label="Out size")
|
83 |
+
btn = gr.Button(value="Get BEV Image")
|
84 |
+
btn.click(get_BEV_kitti,inputs= [front_img, fov, pitch, scale, out_size], outputs=BEV_output, queue=False)
|
85 |
+
gr.Markdown(
|
86 |
+
"""
|
87 |
+
### Note:
|
88 |
+
- If you wish to acquire **quantitative localization error results** for your uploaded data, kindly supply the real GPS for the ground image as well as the corresponding GPS for the center of the satellite image.
|
89 |
+
- When inputting GPS coordinates, please make sure their precision extends to **at least six decimal places**.
|
90 |
+
""")
|
91 |
+
|
92 |
+
gr.Markdown("## Image Examples")
|
93 |
+
gr.Examples(
|
94 |
+
examples=[['./figure/exp1.jpg', 27, 7, 6, 1000]],
|
95 |
+
inputs= [front_img, fov, pitch, scale, out_size],
|
96 |
+
outputs=[BEV_output],
|
97 |
+
fn=get_BEV_kitti,
|
98 |
+
cache_examples=False,
|
99 |
+
)
|
100 |
+
demo.launch(server_port=7981)
|
101 |
+
|
102 |
+
if __name__ == '__main__':
|
103 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
104 |
+
KittiBEV()
|
figure/exp1.jpg
ADDED
models/utils/__pycache__/torch_geometry.cpython-38.pyc
ADDED
Binary file (16 kB). View file
|
|
models/utils/torch_geometry.py
ADDED
@@ -0,0 +1,496 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import functools
|
5 |
+
from typing import Tuple, Optional
|
6 |
+
|
7 |
+
|
8 |
+
##########################
|
9 |
+
#### from pytorch3d ####
|
10 |
+
##########################
|
11 |
+
def _axis_angle_rotation(axis: str, angle):
|
12 |
+
"""
|
13 |
+
Return the rotation matrices for one of the rotations about an axis
|
14 |
+
of which Euler angles describe, for each value of the angle given.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
axis: Axis label "X" or "Y or "Z".
|
18 |
+
angle: any shape tensor of Euler angles in radians
|
19 |
+
|
20 |
+
Returns:
|
21 |
+
Rotation matrices as tensor of shape (..., 3, 3).
|
22 |
+
"""
|
23 |
+
|
24 |
+
cos = torch.cos(angle)
|
25 |
+
sin = torch.sin(angle)
|
26 |
+
one = torch.ones_like(angle)
|
27 |
+
zero = torch.zeros_like(angle)
|
28 |
+
|
29 |
+
if axis == "X":
|
30 |
+
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos)
|
31 |
+
if axis == "Y":
|
32 |
+
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos)
|
33 |
+
if axis == "Z":
|
34 |
+
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one)
|
35 |
+
|
36 |
+
return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3))
|
37 |
+
|
38 |
+
def euler_angles_to_matrix(euler_angles, convention: str):
|
39 |
+
"""
|
40 |
+
Convert rotations given as Euler angles in radians to rotation matrices.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
euler_angles: Euler angles in radians as tensor of shape (..., 3).
|
44 |
+
convention: Convention string of three uppercase letters from
|
45 |
+
{"X", "Y", and "Z"}.
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
Rotation matrices as tensor of shape (..., 3, 3).
|
49 |
+
"""
|
50 |
+
if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3:
|
51 |
+
raise ValueError("Invalid input euler angles.")
|
52 |
+
if len(convention) != 3:
|
53 |
+
raise ValueError("Convention must have 3 letters.")
|
54 |
+
if convention[1] in (convention[0], convention[2]):
|
55 |
+
raise ValueError(f"Invalid convention {convention}.")
|
56 |
+
for letter in convention:
|
57 |
+
if letter not in ("X", "Y", "Z"):
|
58 |
+
raise ValueError(f"Invalid letter {letter} in convention string.")
|
59 |
+
matrices = map(_axis_angle_rotation, convention, torch.unbind(euler_angles, -1))
|
60 |
+
return functools.reduce(torch.matmul, matrices)
|
61 |
+
|
62 |
+
###########################
|
63 |
+
#### from pytorchgemotry ####
|
64 |
+
###########################
|
65 |
+
def get_perspective_transform(src, dst):
|
66 |
+
r"""Calculates a perspective transform from four pairs of the corresponding
|
67 |
+
points.
|
68 |
+
|
69 |
+
The function calculates the matrix of a perspective transform so that:
|
70 |
+
|
71 |
+
.. math ::
|
72 |
+
|
73 |
+
\begin{bmatrix}
|
74 |
+
t_{i}x_{i}^{'} \\
|
75 |
+
t_{i}y_{i}^{'} \\
|
76 |
+
t_{i} \\
|
77 |
+
\end{bmatrix}
|
78 |
+
=
|
79 |
+
\textbf{map_matrix} \cdot
|
80 |
+
\begin{bmatrix}
|
81 |
+
x_{i} \\
|
82 |
+
y_{i} \\
|
83 |
+
1 \\
|
84 |
+
\end{bmatrix}
|
85 |
+
|
86 |
+
where
|
87 |
+
|
88 |
+
.. math ::
|
89 |
+
dst(i) = (x_{i}^{'},y_{i}^{'}), src(i) = (x_{i}, y_{i}), i = 0,1,2,3
|
90 |
+
|
91 |
+
Args:
|
92 |
+
src (Tensor): coordinates of quadrangle vertices in the source image.
|
93 |
+
dst (Tensor): coordinates of the corresponding quadrangle vertices in
|
94 |
+
the destination image.
|
95 |
+
|
96 |
+
Returns:
|
97 |
+
Tensor: the perspective transformation.
|
98 |
+
|
99 |
+
Shape:
|
100 |
+
- Input: :math:`(B, 4, 2)` and :math:`(B, 4, 2)`
|
101 |
+
- Output: :math:`(B, 3, 3)`
|
102 |
+
"""
|
103 |
+
if not torch.is_tensor(src):
|
104 |
+
raise TypeError("Input type is not a torch.Tensor. Got {}"
|
105 |
+
.format(type(src)))
|
106 |
+
if not torch.is_tensor(dst):
|
107 |
+
raise TypeError("Input type is not a torch.Tensor. Got {}"
|
108 |
+
.format(type(dst)))
|
109 |
+
if not src.shape[-2:] == (4, 2):
|
110 |
+
raise ValueError("Inputs must be a Bx4x2 tensor. Got {}"
|
111 |
+
.format(src.shape))
|
112 |
+
if not src.shape == dst.shape:
|
113 |
+
raise ValueError("Inputs must have the same shape. Got {}"
|
114 |
+
.format(dst.shape))
|
115 |
+
if not (src.shape[0] == dst.shape[0]):
|
116 |
+
raise ValueError("Inputs must have same batch size dimension. Got {}"
|
117 |
+
.format(src.shape, dst.shape))
|
118 |
+
|
119 |
+
def ax(p, q):
|
120 |
+
ones = torch.ones_like(p)[..., 0:1]
|
121 |
+
zeros = torch.zeros_like(p)[..., 0:1]
|
122 |
+
return torch.cat(
|
123 |
+
[p[:, 0:1], p[:, 1:2], ones, zeros, zeros, zeros,
|
124 |
+
-p[:, 0:1] * q[:, 0:1], -p[:, 1:2] * q[:, 0:1]
|
125 |
+
], dim=1)
|
126 |
+
|
127 |
+
def ay(p, q):
|
128 |
+
ones = torch.ones_like(p)[..., 0:1]
|
129 |
+
zeros = torch.zeros_like(p)[..., 0:1]
|
130 |
+
return torch.cat(
|
131 |
+
[zeros, zeros, zeros, p[:, 0:1], p[:, 1:2], ones,
|
132 |
+
-p[:, 0:1] * q[:, 1:2], -p[:, 1:2] * q[:, 1:2]], dim=1)
|
133 |
+
# we build matrix A by using only 4 point correspondence. The linear
|
134 |
+
# system is solved with the least square method, so here
|
135 |
+
# we could even pass more correspondence
|
136 |
+
p = []
|
137 |
+
p.append(ax(src[:, 0], dst[:, 0]))
|
138 |
+
p.append(ay(src[:, 0], dst[:, 0]))
|
139 |
+
|
140 |
+
p.append(ax(src[:, 1], dst[:, 1]))
|
141 |
+
p.append(ay(src[:, 1], dst[:, 1]))
|
142 |
+
|
143 |
+
p.append(ax(src[:, 2], dst[:, 2]))
|
144 |
+
p.append(ay(src[:, 2], dst[:, 2]))
|
145 |
+
|
146 |
+
p.append(ax(src[:, 3], dst[:, 3]))
|
147 |
+
p.append(ay(src[:, 3], dst[:, 3]))
|
148 |
+
|
149 |
+
# A is Bx8x8
|
150 |
+
A = torch.stack(p, dim=1)
|
151 |
+
|
152 |
+
# b is a Bx8x1
|
153 |
+
b = torch.stack([
|
154 |
+
dst[:, 0:1, 0], dst[:, 0:1, 1],
|
155 |
+
dst[:, 1:2, 0], dst[:, 1:2, 1],
|
156 |
+
dst[:, 2:3, 0], dst[:, 2:3, 1],
|
157 |
+
dst[:, 3:4, 0], dst[:, 3:4, 1],
|
158 |
+
], dim=1)
|
159 |
+
|
160 |
+
# solve the system Ax = b
|
161 |
+
# X, LU = torch.gesv(b, A)
|
162 |
+
X = torch.linalg.solve(A, b)
|
163 |
+
|
164 |
+
# create variable to return
|
165 |
+
batch_size = src.shape[0]
|
166 |
+
M = torch.ones(batch_size, 9, device=src.device, dtype=src.dtype)
|
167 |
+
M[..., :8] = torch.squeeze(X, dim=-1)
|
168 |
+
return M.view(-1, 3, 3) # Bx3x3
|
169 |
+
|
170 |
+
def warp_perspective(src, M, dsize, flags='bilinear', border_mode=None,
|
171 |
+
border_value=0):
|
172 |
+
r"""Applies a perspective transformation to an image.
|
173 |
+
|
174 |
+
The function warp_perspective transforms the source image using
|
175 |
+
the specified matrix:
|
176 |
+
|
177 |
+
.. math::
|
178 |
+
\text{dst} (x, y) = \text{src} \left(
|
179 |
+
\frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} ,
|
180 |
+
\frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}}
|
181 |
+
\right )
|
182 |
+
|
183 |
+
Args:
|
184 |
+
src (torch.Tensor): input image.
|
185 |
+
M (Tensor): transformation matrix.
|
186 |
+
dsize (tuple): size of the output image (height, width).
|
187 |
+
|
188 |
+
Returns:
|
189 |
+
Tensor: the warped input image.
|
190 |
+
|
191 |
+
Shape:
|
192 |
+
- Input: :math:`(B, C, H, W)` and :math:`(B, 3, 3)`
|
193 |
+
- Output: :math:`(B, C, H, W)`
|
194 |
+
|
195 |
+
.. note::
|
196 |
+
See a working example `here <https://github.com/arraiy/torchgeometry/
|
197 |
+
blob/master/examples/warp_perspective.ipynb>`_.
|
198 |
+
"""
|
199 |
+
if not torch.is_tensor(src):
|
200 |
+
raise TypeError("Input src type is not a torch.Tensor. Got {}"
|
201 |
+
.format(type(src)))
|
202 |
+
if not torch.is_tensor(M):
|
203 |
+
raise TypeError("Input M type is not a torch.Tensor. Got {}"
|
204 |
+
.format(type(M)))
|
205 |
+
if not len(src.shape) == 4:
|
206 |
+
raise ValueError("Input src must be a BxCxHxW tensor. Got {}"
|
207 |
+
.format(src.shape))
|
208 |
+
if not (len(M.shape) == 3 or M.shape[-2:] == (3, 3)):
|
209 |
+
raise ValueError("Input M must be a Bx3x3 tensor. Got {}"
|
210 |
+
.format(src.shape))
|
211 |
+
# launches the warper
|
212 |
+
return transform_warp_impl(src, M, (src.shape[-2:]), dsize)
|
213 |
+
|
214 |
+
|
215 |
+
def transform_warp_impl(src, dst_pix_trans_src_pix, dsize_src, dsize_dst):
|
216 |
+
"""Compute the transform in normalized cooridnates and perform the warping.
|
217 |
+
"""
|
218 |
+
dst_norm_trans_dst_norm = dst_norm_to_dst_norm(
|
219 |
+
dst_pix_trans_src_pix, dsize_src, dsize_dst)
|
220 |
+
return homography_warp(src, torch.inverse(
|
221 |
+
dst_norm_trans_dst_norm), dsize_dst)
|
222 |
+
|
223 |
+
def dst_norm_to_dst_norm(dst_pix_trans_src_pix, dsize_src, dsize_dst):
|
224 |
+
# source and destination sizes
|
225 |
+
src_h, src_w = dsize_src
|
226 |
+
dst_h, dst_w = dsize_dst
|
227 |
+
# the devices and types
|
228 |
+
device = dst_pix_trans_src_pix.device
|
229 |
+
dtype = dst_pix_trans_src_pix.dtype
|
230 |
+
# compute the transformation pixel/norm for src/dst
|
231 |
+
src_norm_trans_src_pix = normal_transform_pixel(
|
232 |
+
src_h, src_w).to(device).to(dtype)
|
233 |
+
src_pix_trans_src_norm = torch.inverse(src_norm_trans_src_pix)
|
234 |
+
dst_norm_trans_dst_pix = normal_transform_pixel(
|
235 |
+
dst_h, dst_w).to(device).to(dtype)
|
236 |
+
# compute chain transformations
|
237 |
+
dst_norm_trans_src_norm = torch.matmul(
|
238 |
+
dst_norm_trans_dst_pix, torch.matmul(
|
239 |
+
dst_pix_trans_src_pix, src_pix_trans_src_norm))
|
240 |
+
return dst_norm_trans_src_norm
|
241 |
+
|
242 |
+
def normal_transform_pixel(height, width):
|
243 |
+
|
244 |
+
tr_mat = torch.Tensor([[1.0, 0.0, -1.0],
|
245 |
+
[0.0, 1.0, -1.0],
|
246 |
+
[0.0, 0.0, 1.0]]) # 1x3x3
|
247 |
+
|
248 |
+
tr_mat[0, 0] = tr_mat[0, 0] * 2.0 / (width - 1.0)
|
249 |
+
tr_mat[1, 1] = tr_mat[1, 1] * 2.0 / (height - 1.0)
|
250 |
+
|
251 |
+
tr_mat = tr_mat.unsqueeze(0)
|
252 |
+
|
253 |
+
return tr_mat
|
254 |
+
|
255 |
+
def homography_warp(patch_src: torch.Tensor,
|
256 |
+
dst_homo_src: torch.Tensor,
|
257 |
+
dsize: Tuple[int, int],
|
258 |
+
mode: Optional[str] = 'bilinear',
|
259 |
+
padding_mode: Optional[str] = 'zeros') -> torch.Tensor:
|
260 |
+
r"""Function that warps image patchs or tensors by homographies.
|
261 |
+
|
262 |
+
See :class:`~torchgeometry.HomographyWarper` for details.
|
263 |
+
|
264 |
+
Args:
|
265 |
+
patch_src (torch.Tensor): The image or tensor to warp. Should be from
|
266 |
+
source of shape :math:`(N, C, H, W)`.
|
267 |
+
dst_homo_src (torch.Tensor): The homography or stack of homographies
|
268 |
+
from source to destination of shape
|
269 |
+
:math:`(N, 3, 3)`.
|
270 |
+
dsize (Tuple[int, int]): The height and width of the image to warp.
|
271 |
+
mode (Optional[str]): interpolation mode to calculate output values
|
272 |
+
'bilinear' | 'nearest'. Default: 'bilinear'.
|
273 |
+
padding_mode (Optional[str]): padding mode for outside grid values
|
274 |
+
'zeros' | 'border' | 'reflection'. Default: 'zeros'.
|
275 |
+
|
276 |
+
Return:
|
277 |
+
torch.Tensor: Patch sampled at locations from source to destination.
|
278 |
+
|
279 |
+
Example:
|
280 |
+
>>> input = torch.rand(1, 3, 32, 32)
|
281 |
+
>>> homography = torch.eye(3).view(1, 3, 3)
|
282 |
+
>>> output = tgm.homography_warp(input, homography, (32, 32)) # NxCxHxW
|
283 |
+
"""
|
284 |
+
height, width = dsize
|
285 |
+
warper = HomographyWarper(height, width, mode, padding_mode)
|
286 |
+
return warper(patch_src, dst_homo_src)
|
287 |
+
|
288 |
+
class HomographyWarper(nn.Module):
|
289 |
+
r"""Warps image patches or tensors by homographies.
|
290 |
+
|
291 |
+
.. math::
|
292 |
+
|
293 |
+
X_{dst} = H_{src}^{\{dst\}} * X_{src}
|
294 |
+
|
295 |
+
Args:
|
296 |
+
height (int): The height of the image to warp.
|
297 |
+
width (int): The width of the image to warp.
|
298 |
+
mode (Optional[str]): interpolation mode to calculate output values
|
299 |
+
'bilinear' | 'nearest'. Default: 'bilinear'.
|
300 |
+
padding_mode (Optional[str]): padding mode for outside grid values
|
301 |
+
'zeros' | 'border' | 'reflection'. Default: 'zeros'.
|
302 |
+
normalized_coordinates (Optional[bool]): wether to use a grid with
|
303 |
+
normalized coordinates.
|
304 |
+
"""
|
305 |
+
|
306 |
+
def __init__(
|
307 |
+
self,
|
308 |
+
height: int,
|
309 |
+
width: int,
|
310 |
+
mode: Optional[str] = 'bilinear',
|
311 |
+
padding_mode: Optional[str] = 'zeros',
|
312 |
+
normalized_coordinates: Optional[bool] = True) -> None:
|
313 |
+
super(HomographyWarper, self).__init__()
|
314 |
+
self.width: int = width
|
315 |
+
self.height: int = height
|
316 |
+
self.mode: Optional[str] = mode
|
317 |
+
self.padding_mode: Optional[str] = padding_mode
|
318 |
+
self.normalized_coordinates: Optional[bool] = normalized_coordinates
|
319 |
+
|
320 |
+
# create base grid to compute the flow
|
321 |
+
self.grid: torch.Tensor = create_meshgrid(
|
322 |
+
height, width, normalized_coordinates=normalized_coordinates)
|
323 |
+
|
324 |
+
def warp_grid(self, dst_homo_src: torch.Tensor) -> torch.Tensor:
|
325 |
+
r"""Computes the grid to warp the coordinates grid by an homography.
|
326 |
+
|
327 |
+
Args:
|
328 |
+
dst_homo_src (torch.Tensor): Homography or homographies (stacked) to
|
329 |
+
transform all points in the grid. Shape of the
|
330 |
+
homography has to be :math:`(N, 3, 3)`.
|
331 |
+
|
332 |
+
Returns:
|
333 |
+
torch.Tensor: the transformed grid of shape :math:`(N, H, W, 2)`.
|
334 |
+
"""
|
335 |
+
batch_size: int = dst_homo_src.shape[0]
|
336 |
+
device: torch.device = dst_homo_src.device
|
337 |
+
dtype: torch.dtype = dst_homo_src.dtype
|
338 |
+
# expand grid to match the input batch size
|
339 |
+
grid: torch.Tensor = self.grid.expand(batch_size, -1, -1, -1) # NxHxWx2
|
340 |
+
if len(dst_homo_src.shape) == 3: # local homography case
|
341 |
+
dst_homo_src = dst_homo_src.view(batch_size, 1, 3, 3) # NxHxWx3x3
|
342 |
+
# perform the actual grid transformation,
|
343 |
+
# the grid is copied to input device and casted to the same type
|
344 |
+
flow: torch.Tensor = transform_points(
|
345 |
+
dst_homo_src, grid.to(device).to(dtype)) # NxHxWx2
|
346 |
+
return flow.view(batch_size, self.height, self.width, 2) # NxHxWx2
|
347 |
+
|
348 |
+
def forward(
|
349 |
+
self,
|
350 |
+
patch_src: torch.Tensor,
|
351 |
+
dst_homo_src: torch.Tensor) -> torch.Tensor:
|
352 |
+
r"""Warps an image or tensor from source into reference frame.
|
353 |
+
|
354 |
+
Args:
|
355 |
+
patch_src (torch.Tensor): The image or tensor to warp.
|
356 |
+
Should be from source.
|
357 |
+
dst_homo_src (torch.Tensor): The homography or stack of homographies
|
358 |
+
from source to destination. The homography assumes normalized
|
359 |
+
coordinates [-1, 1].
|
360 |
+
|
361 |
+
Return:
|
362 |
+
torch.Tensor: Patch sampled at locations from source to destination.
|
363 |
+
|
364 |
+
Shape:
|
365 |
+
- Input: :math:`(N, C, H, W)` and :math:`(N, 3, 3)`
|
366 |
+
- Output: :math:`(N, C, H, W)`
|
367 |
+
|
368 |
+
Example:
|
369 |
+
>>> input = torch.rand(1, 3, 32, 32)
|
370 |
+
>>> homography = torch.eye(3).view(1, 3, 3)
|
371 |
+
>>> warper = tgm.HomographyWarper(32, 32)
|
372 |
+
>>> output = warper(input, homography) # NxCxHxW
|
373 |
+
"""
|
374 |
+
if not dst_homo_src.device == patch_src.device:
|
375 |
+
raise TypeError("Patch and homography must be on the same device. \
|
376 |
+
Got patch.device: {} dst_H_src.device: {}."
|
377 |
+
.format(patch_src.device, dst_homo_src.device))
|
378 |
+
return F.grid_sample(patch_src, self.warp_grid(dst_homo_src),
|
379 |
+
mode=self.mode, padding_mode=self.padding_mode)
|
380 |
+
|
381 |
+
|
382 |
+
|
383 |
+
def create_meshgrid(
|
384 |
+
height: int,
|
385 |
+
width: int,
|
386 |
+
normalized_coordinates: Optional[bool] = True):
|
387 |
+
"""Generates a coordinate grid for an image.
|
388 |
+
|
389 |
+
When the flag `normalized_coordinates` is set to True, the grid is
|
390 |
+
normalized to be in the range [-1,1] to be consistent with the pytorch
|
391 |
+
function grid_sample.
|
392 |
+
http://pytorch.org/docs/master/nn.html#torch.nn.functional.grid_sample
|
393 |
+
|
394 |
+
Args:
|
395 |
+
height (int): the image height (rows).
|
396 |
+
width (int): the image width (cols).
|
397 |
+
normalized_coordinates (Optional[bool]): wether to normalize
|
398 |
+
coordinates in the range [-1, 1] in order to be consistent with the
|
399 |
+
PyTorch function grid_sample.
|
400 |
+
|
401 |
+
Return:
|
402 |
+
torch.Tensor: returns a grid tensor with shape :math:`(1, H, W, 2)`.
|
403 |
+
"""
|
404 |
+
# generate coordinates
|
405 |
+
xs: Optional[torch.Tensor] = None
|
406 |
+
ys: Optional[torch.Tensor] = None
|
407 |
+
if normalized_coordinates:
|
408 |
+
xs = torch.linspace(-1, 1, width)
|
409 |
+
ys = torch.linspace(-1, 1, height)
|
410 |
+
else:
|
411 |
+
xs = torch.linspace(0, width - 1, width)
|
412 |
+
ys = torch.linspace(0, height - 1, height)
|
413 |
+
# generate grid by stacking coordinates
|
414 |
+
base_grid: torch.Tensor = torch.stack(
|
415 |
+
torch.meshgrid([xs, ys])).transpose(1, 2) # 2xHxW
|
416 |
+
return torch.unsqueeze(base_grid, dim=0).permute(0, 2, 3, 1) # 1xHxWx2
|
417 |
+
|
418 |
+
|
419 |
+
def transform_points(trans_01: torch.Tensor,
|
420 |
+
points_1: torch.Tensor) -> torch.Tensor:
|
421 |
+
r"""Function that applies transformations to a set of points.
|
422 |
+
|
423 |
+
Args:
|
424 |
+
trans_01 (torch.Tensor): tensor for transformations of shape
|
425 |
+
:math:`(B, D+1, D+1)`.
|
426 |
+
points_1 (torch.Tensor): tensor of points of shape :math:`(B, N, D)`.
|
427 |
+
Returns:
|
428 |
+
torch.Tensor: tensor of N-dimensional points.
|
429 |
+
|
430 |
+
Shape:
|
431 |
+
- Output: :math:`(B, N, D)`
|
432 |
+
|
433 |
+
Examples:
|
434 |
+
|
435 |
+
>>> points_1 = torch.rand(2, 4, 3) # BxNx3
|
436 |
+
>>> trans_01 = torch.eye(4).view(1, 4, 4) # Bx4x4
|
437 |
+
>>> points_0 = tgm.transform_points(trans_01, points_1) # BxNx3
|
438 |
+
"""
|
439 |
+
if not torch.is_tensor(trans_01) or not torch.is_tensor(points_1):
|
440 |
+
raise TypeError("Input type is not a torch.Tensor")
|
441 |
+
if not trans_01.device == points_1.device:
|
442 |
+
raise TypeError("Tensor must be in the same device")
|
443 |
+
if not trans_01.shape[0] == points_1.shape[0]:
|
444 |
+
raise ValueError("Input batch size must be the same for both tensors")
|
445 |
+
if not trans_01.shape[-1] == (points_1.shape[-1] + 1):
|
446 |
+
raise ValueError("Last input dimensions must differe by one unit")
|
447 |
+
# to homogeneous
|
448 |
+
points_1_h = convert_points_to_homogeneous(points_1) # BxNxD+1
|
449 |
+
# transform coordinates
|
450 |
+
points_0_h = torch.matmul(
|
451 |
+
trans_01.unsqueeze(1), points_1_h.unsqueeze(-1))
|
452 |
+
points_0_h = torch.squeeze(points_0_h, dim=-1)
|
453 |
+
# to euclidean
|
454 |
+
points_0 = convert_points_from_homogeneous(points_0_h) # BxNxD
|
455 |
+
return points_0
|
456 |
+
|
457 |
+
|
458 |
+
def convert_points_to_homogeneous(points):
|
459 |
+
r"""Function that converts points from Euclidean to homogeneous space.
|
460 |
+
|
461 |
+
See :class:`~torchgeometry.ConvertPointsToHomogeneous` for details.
|
462 |
+
|
463 |
+
Examples::
|
464 |
+
|
465 |
+
>>> input = torch.rand(2, 4, 3) # BxNx3
|
466 |
+
>>> output = tgm.convert_points_to_homogeneous(input) # BxNx4
|
467 |
+
"""
|
468 |
+
if not torch.is_tensor(points):
|
469 |
+
raise TypeError("Input type is not a torch.Tensor. Got {}".format(
|
470 |
+
type(points)))
|
471 |
+
if len(points.shape) < 2:
|
472 |
+
raise ValueError("Input must be at least a 2D tensor. Got {}".format(
|
473 |
+
points.shape))
|
474 |
+
|
475 |
+
return nn.functional.pad(points, (0, 1), "constant", 1.0)
|
476 |
+
|
477 |
+
|
478 |
+
|
479 |
+
def convert_points_from_homogeneous(points):
|
480 |
+
r"""Function that converts points from homogeneous to Euclidean space.
|
481 |
+
|
482 |
+
See :class:`~torchgeometry.ConvertPointsFromHomogeneous` for details.
|
483 |
+
|
484 |
+
Examples::
|
485 |
+
|
486 |
+
>>> input = torch.rand(2, 4, 3) # BxNx3
|
487 |
+
>>> output = tgm.convert_points_from_homogeneous(input) # BxNx2
|
488 |
+
"""
|
489 |
+
if not torch.is_tensor(points):
|
490 |
+
raise TypeError("Input type is not a torch.Tensor. Got {}".format(
|
491 |
+
type(points)))
|
492 |
+
if len(points.shape) < 2:
|
493 |
+
raise ValueError("Input must be at least a 2D tensor. Got {}".format(
|
494 |
+
points.shape))
|
495 |
+
|
496 |
+
return points[..., :-1] / points[..., -1:]
|