File size: 8,284 Bytes
aa7dcb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import io
import re
import string

import docx2txt
import fitz
import gradio as gr
import joblib
import matplotlib.pyplot as plt
import nltk
import seaborn as sns
import shap
import textract
import torch
from lime.lime_text import LimeTextExplainer
from striprtf.striprtf import rtf_to_text
from transformers import BertForSequenceClassification, BertTokenizer, pipeline

from preprocessing import TextCleaner

cleaner = TextCleaner()
pipe = joblib.load('pipe_v1_natasha.joblib')

model_path = "finetunebert"
tokenizer = BertTokenizer.from_pretrained(model_path,
                                          padding='max_length',
                                          truncation=True)
# tokenizer.init_kwargs["model_max_length"] = 512
model = BertForSequenceClassification.from_pretrained(model_path)
document_classifier = pipeline("text-classification",
                               model=model,
                               tokenizer=tokenizer,
                               return_all_scores=True)

classes = [
    "Договоры поставки", "Договоры оказания услуг", "Договоры подряда",
    "Договоры аренды", "Договоры купли-продажи"
]


def old__pipeline(text):
    clean_text = text_preprocessing(text)
    tokens = tokenizer.batch_encode_plus([clean_text],
                                         max_length=512,
                                         padding=True,
                                         truncation=True)
    item = {k: torch.tensor(v) for k, v in tokens.items()}
    preds = model(**item).logits.detach()
    preds = torch.softmax(preds, dim=1)[0]
    output = [{
        'label': cls,
        'score': score
    } for cls, score in zip(classes, preds)]

    return output


def read_doc(file_obj):
    """Read file
    :param file_obj: file object
    :return: string
    """
    text = read_file(file_obj)
    return text


def read_docv2(file_obj):
    """Read file and collect neighbour for visual output
    :param file_obj: file object
    :return: string
    """
    text = read_file(file_obj)
    explainer = LimeTextExplainer(class_names=classes)
    text = cleaner.execute(text)
    exp = explainer.explain_instance(text,
                                     pipe.predict_proba,
                                     num_features=10,
                                     labels=[0, 1, 2, 3, 4])
    scores = exp.as_list()
    scores_desc = sorted(scores, key=lambda t: t[1])[::-1]
    selected_words = [word[0] for word in scores_desc]
    sent = text.split()
    indices = [i for i, word in enumerate(sent) if word in selected_words]
    neighbors = []
    for ind in indices:
        neighbors.append(" ".join(sent[max(0, ind - 3):min(ind +
                                                           3, len(sent))]))
    return "\n\n".join(neighbors)


def classifier(file_obj):
    """Classify
    :param file_obj: file object
    :return: Dict[str, int]
    """
    text = read_file(file_obj)
    clean_text = text_preprocessing(text)
    tokens = tokenizer.batch_encode_plus([clean_text],
                                         max_length=512,
                                         padding=True,
                                         truncation=True)
    item = {k: torch.tensor(v) for k, v in tokens.items()}
    preds = model(**item).logits.detach()
    preds = torch.softmax(preds, dim=1)[0]
    return {cls: p.item() for cls, p in zip(classes, preds)}


def clean_text(text):
    """Make text lowercase, remove text in square brackets,remove links,remove punctuation
    and remove words containing numbers."""
    text = text.lower()
    text = re.sub('\[.*?\]', '', text)
    text = re.sub('https?://\S+|www\.\S+', '', text)
    text = re.sub('<.*?>+', '', text)
    text = re.sub('[%s]' % re.escape(string.punctuation), '', text)
    text = re.sub('\n', '', text)
    text = re.sub('\w*\d\w*', '', text)
    return text


def text_preprocessing(text):
    """Cleaning and parsing the text."""
    tokenizer = nltk.tokenize.RegexpTokenizer(r'\w+')
    nopunc = clean_text(text)
    tokenized_text = tokenizer.tokenize(nopunc)
    #remove_stopwords = [w for w in tokenized_text if w not in stopwords.words('english')]
    combined_text = ' '.join(tokenized_text)
    return combined_text


def read_file(file_obj):
    """Read file and fixing encoding
    :param file_obj: file object
    :return: string
    """
    if isinstance(file_obj, list):
        file_obj = file_obj[0]
    filename = file_obj.name
    if filename.endswith("docx"):
        text = docx2txt.process(filename)
    elif filename.endswith("pdf"):
        doc = fitz.open(filename)
        text = []
        for page in doc:
            text.append(page.get_text())
        text = " ".join(text)
    elif filename.endswith("doc"):
        text = reinterpret(textract.process(filename))
        text = remove_convert_info(text)
    elif filename.endswith("rtf"):
        with open(filename) as f:
            content = f.read()
            text = rtf_to_text(content)
    else:
        return {"text": []}
    return text


def reinterpret(text: str):
    return text.decode('utf8')


def remove_convert_info(text: str):
    for i, s in enumerate(text):
        if s == ":":
            break
    return text[i + 6:]


def plot_weights(file_obj):
    text = read_file(file_obj)
    explainer = LimeTextExplainer(class_names=classes)
    text = cleaner.execute(text)
    exp = explainer.explain_instance(text,
                                     pipe.predict_proba,
                                     num_features=10,
                                     labels=[0, 1, 2, 3, 4])
    scores = exp.as_list()
    scores_desc = sorted(scores, key=lambda t: t[1])[::-1]
    plt.rcParams.update({'font.size': 35})
    fig = plt.figure(figsize=(20, 20))
    sns.barplot(x=[s[0] for s in scores_desc[:10]],
                y=[s[1] for s in scores_desc[:10]])
    plt.title("Top words contributing to positive sentiment")
    plt.ylabel("Weight")
    plt.xlabel("Word")
    plt.title("Interpreting text predictions with LIME")
    plt.xticks(rotation=20)
    plt.tight_layout()
    return fig


def interpretation_function(file_obj):
    text = read_file(file_obj)
    clean_text = text_preprocessing(text)
    explainer = shap.Explainer(document_classifier)
    shap_values = explainer([clean_text])

    # Dimensions are (batch size, text size, number of classes)
    # Since we care about positive sentiment, use index 1
    scores = list(zip(shap_values.data[0], shap_values.values[0, :, 1]))
    # Scores contains (word, score) pairs
    # Format expected by gr.components.Interpretation
    return {"original": clean_text, "interpretation": scores}


def as_pyplot_figure(file_obj):
    text = read_file(file_obj)
    explainer = LimeTextExplainer(class_names=classes)
    text = cleaner.execute(text)
    exp = explainer.explain_instance(text,
                                     pipe.predict_proba,
                                     num_features=10,
                                     labels=[0, 1, 2, 3, 4])
    buf = io.BytesIO()
    fig = exp.as_pyplot_figure()
    fig.tight_layout()
    plt.rcParams.update({'font.size': 10})
    plt.savefig(buf)
    buf.seek(0)
    return fig


with gr.Blocks() as demo:
    gr.Markdown("""**Document classification**""")
    with gr.Row():
        with gr.Column():
            file = gr.File(label="Input File")
            with gr.Row():
                classify = gr.Button("Classify document")
                read = gr.Button("Get text")
                interpret_lime = gr.Button("Interpret LIME")
                interpret_shap = gr.Button("Interpret SHAP")
        with gr.Column():
            label = gr.Label(label="Predicted Document Class")
            plot = gr.Plot()
        with gr.Column():
            text = gr.Text(label="Selected keywords")
        with gr.Column():
            interpretation = gr.components.Interpretation(text)
    classify.click(classifier, file, label)
    read.click(read_docv2, file, [text])
    interpret_shap.click(interpretation_function, file, interpretation)
    interpret_lime.click(as_pyplot_figure, file, plot)

if __name__ == "__main__":
    demo.launch(share=True)