import io import re import string import docx2txt import fitz import gradio as gr import joblib import matplotlib.pyplot as plt import nltk import seaborn as sns import shap import textract import torch from lime.lime_text import LimeTextExplainer from striprtf.striprtf import rtf_to_text from transformers import BertForSequenceClassification, BertTokenizer, pipeline from preprocessing import TextCleaner cleaner = TextCleaner() pipe = joblib.load('pipe_v1_natasha.joblib') model_path = "finetunebert" tokenizer = BertTokenizer.from_pretrained(model_path, padding='max_length', truncation=True) # tokenizer.init_kwargs["model_max_length"] = 512 model = BertForSequenceClassification.from_pretrained(model_path) document_classifier = pipeline("text-classification", model=model, tokenizer=tokenizer, return_all_scores=True) classes = [ "Договоры поставки", "Договоры оказания услуг", "Договоры подряда", "Договоры аренды", "Договоры купли-продажи" ] def old__pipeline(text): clean_text = text_preprocessing(text) tokens = tokenizer.batch_encode_plus([clean_text], max_length=512, padding=True, truncation=True) item = {k: torch.tensor(v) for k, v in tokens.items()} preds = model(**item).logits.detach() preds = torch.softmax(preds, dim=1)[0] output = [{ 'label': cls, 'score': score } for cls, score in zip(classes, preds)] return output def read_doc(file_obj): """Read file :param file_obj: file object :return: string """ text = read_file(file_obj) return text def read_docv2(file_obj): """Read file and collect neighbour for visual output :param file_obj: file object :return: string """ text = read_file(file_obj) explainer = LimeTextExplainer(class_names=classes) text = cleaner.execute(text) exp = explainer.explain_instance(text, pipe.predict_proba, num_features=10, labels=[0, 1, 2, 3, 4]) scores = exp.as_list() scores_desc = sorted(scores, key=lambda t: t[1])[::-1] selected_words = [word[0] for word in scores_desc] sent = text.split() indices = [i for i, word in enumerate(sent) if word in selected_words] neighbors = [] for ind in indices: neighbors.append(" ".join(sent[max(0, ind - 3):min(ind + 3, len(sent))])) return "\n\n".join(neighbors) def classifier(file_obj): """Classify :param file_obj: file object :return: Dict[str, int] """ text = read_file(file_obj) clean_text = text_preprocessing(text) tokens = tokenizer.batch_encode_plus([clean_text], max_length=512, padding=True, truncation=True) item = {k: torch.tensor(v) for k, v in tokens.items()} preds = model(**item).logits.detach() preds = torch.softmax(preds, dim=1)[0] return {cls: p.item() for cls, p in zip(classes, preds)} def clean_text(text): """Make text lowercase, remove text in square brackets,remove links,remove punctuation and remove words containing numbers.""" text = text.lower() text = re.sub('\[.*?\]', '', text) text = re.sub('https?://\S+|www\.\S+', '', text) text = re.sub('<.*?>+', '', text) text = re.sub('[%s]' % re.escape(string.punctuation), '', text) text = re.sub('\n', '', text) text = re.sub('\w*\d\w*', '', text) return text def text_preprocessing(text): """Cleaning and parsing the text.""" tokenizer = nltk.tokenize.RegexpTokenizer(r'\w+') nopunc = clean_text(text) tokenized_text = tokenizer.tokenize(nopunc) #remove_stopwords = [w for w in tokenized_text if w not in stopwords.words('english')] combined_text = ' '.join(tokenized_text) return combined_text def read_file(file_obj): """Read file and fixing encoding :param file_obj: file object :return: string """ if isinstance(file_obj, list): file_obj = file_obj[0] filename = file_obj.name if filename.endswith("docx"): text = docx2txt.process(filename) elif filename.endswith("pdf"): doc = fitz.open(filename) text = [] for page in doc: text.append(page.get_text()) text = " ".join(text) elif filename.endswith("doc"): text = reinterpret(textract.process(filename)) text = remove_convert_info(text) elif filename.endswith("rtf"): with open(filename) as f: content = f.read() text = rtf_to_text(content) else: return {"text": []} return text def reinterpret(text: str): return text.decode('utf8') def remove_convert_info(text: str): for i, s in enumerate(text): if s == ":": break return text[i + 6:] def plot_weights(file_obj): text = read_file(file_obj) explainer = LimeTextExplainer(class_names=classes) text = cleaner.execute(text) exp = explainer.explain_instance(text, pipe.predict_proba, num_features=10, labels=[0, 1, 2, 3, 4]) scores = exp.as_list() scores_desc = sorted(scores, key=lambda t: t[1])[::-1] plt.rcParams.update({'font.size': 35}) fig = plt.figure(figsize=(20, 20)) sns.barplot(x=[s[0] for s in scores_desc[:10]], y=[s[1] for s in scores_desc[:10]]) plt.title("Top words contributing to positive sentiment") plt.ylabel("Weight") plt.xlabel("Word") plt.title("Interpreting text predictions with LIME") plt.xticks(rotation=20) plt.tight_layout() return fig def interpretation_function(file_obj): text = read_file(file_obj) clean_text = text_preprocessing(text) explainer = shap.Explainer(document_classifier) shap_values = explainer([clean_text]) # Dimensions are (batch size, text size, number of classes) # Since we care about positive sentiment, use index 1 scores = list(zip(shap_values.data[0], shap_values.values[0, :, 1])) # Scores contains (word, score) pairs # Format expected by gr.components.Interpretation return {"original": clean_text, "interpretation": scores} def as_pyplot_figure(file_obj): text = read_file(file_obj) explainer = LimeTextExplainer(class_names=classes) text = cleaner.execute(text) exp = explainer.explain_instance(text, pipe.predict_proba, num_features=10, labels=[0, 1, 2, 3, 4]) buf = io.BytesIO() fig = exp.as_pyplot_figure() fig.tight_layout() plt.rcParams.update({'font.size': 10}) plt.savefig(buf) buf.seek(0) return fig with gr.Blocks() as demo: gr.Markdown("""**Document classification**""") with gr.Row(): with gr.Column(): file = gr.File(label="Input File") with gr.Row(): classify = gr.Button("Classify document") read = gr.Button("Get text") interpret_lime = gr.Button("Interpret LIME") interpret_shap = gr.Button("Interpret SHAP") with gr.Column(): label = gr.Label(label="Predicted Document Class") plot = gr.Plot() with gr.Column(): text = gr.Text(label="Selected keywords") with gr.Column(): interpretation = gr.components.Interpretation(text) classify.click(classifier, file, label) read.click(read_docv2, file, [text]) interpret_shap.click(interpretation_function, file, interpretation) interpret_lime.click(as_pyplot_figure, file, plot) if __name__ == "__main__": demo.launch(share=True)