Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import cv2
|
@@ -21,6 +22,7 @@ from huggingface_hub import snapshot_download
|
|
21 |
import subprocess
|
22 |
import sys
|
23 |
|
|
|
24 |
def download_liveportrait():
|
25 |
"""
|
26 |
Clone the LivePortrait repository and prepare its dependencies.
|
@@ -55,6 +57,7 @@ def download_liveportrait():
|
|
55 |
print("Failed to initialize LivePortrait:", e)
|
56 |
raise
|
57 |
|
|
|
58 |
def download_huggingface_resources():
|
59 |
"""
|
60 |
Download additional necessary resources from Hugging Face using the CLI.
|
@@ -81,6 +84,7 @@ def download_huggingface_resources():
|
|
81 |
print("General error in downloading resources:", e)
|
82 |
raise
|
83 |
|
|
|
84 |
def get_project_root():
|
85 |
"""Get the root directory of the current project."""
|
86 |
return os.path.abspath(os.path.dirname(__file__))
|
@@ -116,9 +120,11 @@ pipe_controlnet.enable_attention_slicing()
|
|
116 |
pipe_inpaint_controlnet.to(device)
|
117 |
pipe_inpaint_controlnet.enable_attention_slicing()
|
118 |
|
|
|
119 |
def resize_to_multiple_of_64(width, height):
|
120 |
return (width // 64) * 64, (height // 64) * 64
|
121 |
|
|
|
122 |
def expand_mask(mask, kernel_size):
|
123 |
mask_array = np.array(mask)
|
124 |
structuring_element = np.ones((kernel_size, kernel_size), dtype=np.uint8)
|
@@ -127,6 +133,7 @@ def expand_mask(mask, kernel_size):
|
|
127 |
).astype(np.uint8) * 255
|
128 |
return Image.fromarray(expanded_mask_array)
|
129 |
|
|
|
130 |
def crop_face_to_square(image_rgb, padding_ratio=0.2):
|
131 |
"""
|
132 |
Detects the face in the input image and crops an enlarged square region around it.
|
@@ -155,6 +162,7 @@ def crop_face_to_square(image_rgb, padding_ratio=0.2):
|
|
155 |
|
156 |
return resized_image
|
157 |
|
|
|
158 |
def spirit_animal_baseline(image_path, num_images = 4):
|
159 |
|
160 |
image = cv2.imread(image_path)
|
@@ -235,6 +243,7 @@ def spirit_animal_baseline(image_path, num_images = 4):
|
|
235 |
|
236 |
return prompt, generated_images
|
237 |
|
|
|
238 |
def spirit_animal_with_background(image_path, num_images = 4):
|
239 |
|
240 |
image = cv2.imread(image_path)
|
@@ -323,6 +332,8 @@ def spirit_animal_with_background(image_path, num_images = 4):
|
|
323 |
|
324 |
return prompt, generated_images
|
325 |
|
|
|
|
|
326 |
def generate_multiple_animals(image_path, keep_background=True, num_images = 4):
|
327 |
|
328 |
image = cv2.imread(image_path)
|
@@ -443,6 +454,7 @@ def generate_multiple_animals(image_path, keep_background=True, num_images = 4):
|
|
443 |
|
444 |
return formatted_prompts, generated_images
|
445 |
|
|
|
446 |
def wait_for_file(file_path, timeout=500):
|
447 |
"""
|
448 |
Wait for a file to be created, with a specified timeout.
|
@@ -459,6 +471,7 @@ def wait_for_file(file_path, timeout=500):
|
|
459 |
time.sleep(0.5) # Check every 0.5 seconds
|
460 |
return True
|
461 |
|
|
|
462 |
def generate_spirit_animal_video(driving_video_path):
|
463 |
os.chdir(".")
|
464 |
try:
|
@@ -516,6 +529,8 @@ def generate_spirit_animal_video(driving_video_path):
|
|
516 |
print(f"Error occurred: {e}")
|
517 |
return None
|
518 |
|
|
|
|
|
519 |
def generate_spirit_animal(image, animal_type, background):
|
520 |
if animal_type == "Single Animal":
|
521 |
if background == "Preserve Background":
|
@@ -529,6 +544,8 @@ def generate_spirit_animal(image, animal_type, background):
|
|
529 |
prompt, generated_images = generate_multiple_animals(image, keep_background=False)
|
530 |
return prompt, generated_images
|
531 |
|
|
|
|
|
532 |
def compress_video(input_path, output_path, target_size_mb):
|
533 |
target_size_bytes = target_size_mb * 1024 * 1024
|
534 |
temp_output = "./temp_compressed.mp4"
|
@@ -557,6 +574,7 @@ def compress_video(input_path, output_path, target_size_mb):
|
|
557 |
else:
|
558 |
shutil.move(temp_output, output_path)
|
559 |
|
|
|
560 |
def process_video(video_file):
|
561 |
|
562 |
# εε§ε LivePortrait
|
|
|
1 |
+
import spaces
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
import cv2
|
|
|
22 |
import subprocess
|
23 |
import sys
|
24 |
|
25 |
+
@spaces.GPU(duration=120)
|
26 |
def download_liveportrait():
|
27 |
"""
|
28 |
Clone the LivePortrait repository and prepare its dependencies.
|
|
|
57 |
print("Failed to initialize LivePortrait:", e)
|
58 |
raise
|
59 |
|
60 |
+
@spaces.GPU(duration=120)
|
61 |
def download_huggingface_resources():
|
62 |
"""
|
63 |
Download additional necessary resources from Hugging Face using the CLI.
|
|
|
84 |
print("General error in downloading resources:", e)
|
85 |
raise
|
86 |
|
87 |
+
@spaces.GPU(duration=120)
|
88 |
def get_project_root():
|
89 |
"""Get the root directory of the current project."""
|
90 |
return os.path.abspath(os.path.dirname(__file__))
|
|
|
120 |
pipe_inpaint_controlnet.to(device)
|
121 |
pipe_inpaint_controlnet.enable_attention_slicing()
|
122 |
|
123 |
+
@spaces.GPU(duration=120)
|
124 |
def resize_to_multiple_of_64(width, height):
|
125 |
return (width // 64) * 64, (height // 64) * 64
|
126 |
|
127 |
+
@spaces.GPU(duration=120)
|
128 |
def expand_mask(mask, kernel_size):
|
129 |
mask_array = np.array(mask)
|
130 |
structuring_element = np.ones((kernel_size, kernel_size), dtype=np.uint8)
|
|
|
133 |
).astype(np.uint8) * 255
|
134 |
return Image.fromarray(expanded_mask_array)
|
135 |
|
136 |
+
@spaces.GPU(duration=120)
|
137 |
def crop_face_to_square(image_rgb, padding_ratio=0.2):
|
138 |
"""
|
139 |
Detects the face in the input image and crops an enlarged square region around it.
|
|
|
162 |
|
163 |
return resized_image
|
164 |
|
165 |
+
@spaces.GPU(duration=120)
|
166 |
def spirit_animal_baseline(image_path, num_images = 4):
|
167 |
|
168 |
image = cv2.imread(image_path)
|
|
|
243 |
|
244 |
return prompt, generated_images
|
245 |
|
246 |
+
@spaces.GPU(duration=120)
|
247 |
def spirit_animal_with_background(image_path, num_images = 4):
|
248 |
|
249 |
image = cv2.imread(image_path)
|
|
|
332 |
|
333 |
return prompt, generated_images
|
334 |
|
335 |
+
|
336 |
+
@spaces.GPU(duration=120)
|
337 |
def generate_multiple_animals(image_path, keep_background=True, num_images = 4):
|
338 |
|
339 |
image = cv2.imread(image_path)
|
|
|
454 |
|
455 |
return formatted_prompts, generated_images
|
456 |
|
457 |
+
@spaces.GPU(duration=120)
|
458 |
def wait_for_file(file_path, timeout=500):
|
459 |
"""
|
460 |
Wait for a file to be created, with a specified timeout.
|
|
|
471 |
time.sleep(0.5) # Check every 0.5 seconds
|
472 |
return True
|
473 |
|
474 |
+
@spaces.GPU(duration=120)
|
475 |
def generate_spirit_animal_video(driving_video_path):
|
476 |
os.chdir(".")
|
477 |
try:
|
|
|
529 |
print(f"Error occurred: {e}")
|
530 |
return None
|
531 |
|
532 |
+
|
533 |
+
@spaces.GPU(duration=120)
|
534 |
def generate_spirit_animal(image, animal_type, background):
|
535 |
if animal_type == "Single Animal":
|
536 |
if background == "Preserve Background":
|
|
|
544 |
prompt, generated_images = generate_multiple_animals(image, keep_background=False)
|
545 |
return prompt, generated_images
|
546 |
|
547 |
+
|
548 |
+
@spaces.GPU(duration=120)
|
549 |
def compress_video(input_path, output_path, target_size_mb):
|
550 |
target_size_bytes = target_size_mb * 1024 * 1024
|
551 |
temp_output = "./temp_compressed.mp4"
|
|
|
574 |
else:
|
575 |
shutil.move(temp_output, output_path)
|
576 |
|
577 |
+
@spaces.GPU(duration=120)
|
578 |
def process_video(video_file):
|
579 |
|
580 |
# εε§ε LivePortrait
|