File size: 5,981 Bytes
ee823b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# coding=utf-8
# Copyright 2023, Haofan Wang, Qixun Wang, All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

""" Conversion script for the LoRA's safetensors checkpoints. """

import argparse

import torch
from safetensors.torch import load_file

from diffusers import StableDiffusionPipeline
import pdb



def convert_motion_lora_ckpt_to_diffusers(pipeline, state_dict, alpha=1.0):
    # directly update weight in diffusers model
    for key in state_dict:
        # only process lora down key
        if "up." in key: continue

        up_key    = key.replace(".down.", ".up.")
        model_key = key.replace("processor.", "").replace("_lora", "").replace("down.", "").replace("up.", "")
        model_key = model_key.replace("to_out.", "to_out.0.")
        layer_infos = model_key.split(".")[:-1]

        curr_layer = pipeline.unet
        while len(layer_infos) > 0:
            temp_name = layer_infos.pop(0)
            curr_layer = curr_layer.__getattr__(temp_name)

        weight_down = state_dict[key]
        weight_up   = state_dict[up_key]
        curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).to(curr_layer.weight.data.device)

    return pipeline



def convert_lora(pipeline, state_dict, LORA_PREFIX_UNET="lora_unet", LORA_PREFIX_TEXT_ENCODER="lora_te", alpha=0.6):
    # load base model
    # pipeline = StableDiffusionPipeline.from_pretrained(base_model_path, torch_dtype=torch.float32)

    # load LoRA weight from .safetensors
    # state_dict = load_file(checkpoint_path)

    visited = []

    # directly update weight in diffusers model
    for key in state_dict:
        # it is suggested to print out the key, it usually will be something like below
        # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"

        # as we have set the alpha beforehand, so just skip
        if ".alpha" in key or key in visited:
            continue

        if "text" in key:
            layer_infos = key.split(".")[0].split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_")
            curr_layer = pipeline.text_encoder
        else:
            layer_infos = key.split(".")[0].split(LORA_PREFIX_UNET + "_")[-1].split("_")
            curr_layer = pipeline.unet

        # find the target layer
        temp_name = layer_infos.pop(0)
        while len(layer_infos) > -1:
            try:
                curr_layer = curr_layer.__getattr__(temp_name)
                if len(layer_infos) > 0:
                    temp_name = layer_infos.pop(0)
                elif len(layer_infos) == 0:
                    break
            except Exception:
                if len(temp_name) > 0:
                    temp_name += "_" + layer_infos.pop(0)
                else:
                    temp_name = layer_infos.pop(0)

        pair_keys = []
        if "lora_down" in key:
            pair_keys.append(key.replace("lora_down", "lora_up"))
            pair_keys.append(key)
        else:
            pair_keys.append(key)
            pair_keys.append(key.replace("lora_up", "lora_down"))

        # update weight
        if len(state_dict[pair_keys[0]].shape) == 4:
            weight_up = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32)
            weight_down = state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32)
            curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3).to(curr_layer.weight.data.device)
        else:
            weight_up = state_dict[pair_keys[0]].to(torch.float32)
            weight_down = state_dict[pair_keys[1]].to(torch.float32)
            curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).to(curr_layer.weight.data.device)

        # update visited list
        for item in pair_keys:
            visited.append(item)

    return pipeline


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format."
    )
    parser.add_argument(
        "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
    )
    parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
    parser.add_argument(
        "--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors"
    )
    parser.add_argument(
        "--lora_prefix_text_encoder",
        default="lora_te",
        type=str,
        help="The prefix of text encoder weight in safetensors",
    )
    parser.add_argument("--alpha", default=0.75, type=float, help="The merging ratio in W = W0 + alpha * deltaW")
    parser.add_argument(
        "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not."
    )
    parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")

    args = parser.parse_args()

    base_model_path = args.base_model_path
    checkpoint_path = args.checkpoint_path
    dump_path = args.dump_path
    lora_prefix_unet = args.lora_prefix_unet
    lora_prefix_text_encoder = args.lora_prefix_text_encoder
    alpha = args.alpha

    pipe = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)

    pipe = pipe.to(args.device)
    pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)