|
|
|
|
|
import inspect |
|
from typing import Callable, List, Optional, Union |
|
from dataclasses import dataclass |
|
import numpy as np |
|
import torch |
|
from tqdm import tqdm |
|
|
|
from diffusers.utils import is_accelerate_available |
|
from packaging import version |
|
from transformers import CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers.configuration_utils import FrozenDict |
|
from diffusers.models import AutoencoderKL |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
from diffusers.schedulers import ( |
|
DDIMScheduler, |
|
DPMSolverMultistepScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
) |
|
from diffusers.utils import deprecate, logging, BaseOutput |
|
|
|
from einops import rearrange |
|
|
|
from ..models.unet import UNet3DConditionModel |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@dataclass |
|
class AnimationPipelineOutput(BaseOutput): |
|
videos: Union[torch.Tensor, np.ndarray] |
|
|
|
|
|
class AnimationPipeline(DiffusionPipeline): |
|
_optional_components = [] |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet3DConditionModel, |
|
scheduler: Union[ |
|
DDIMScheduler, |
|
PNDMScheduler, |
|
LMSDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
DPMSolverMultistepScheduler, |
|
], |
|
): |
|
super().__init__() |
|
|
|
if ( |
|
hasattr(scheduler.config, "steps_offset") |
|
and scheduler.config.steps_offset != 1 |
|
): |
|
deprecation_message = ( |
|
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" |
|
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " |
|
"to update the config accordingly as leaving `steps_offset` might led to incorrect results" |
|
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," |
|
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" |
|
" file" |
|
) |
|
deprecate( |
|
"steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False |
|
) |
|
new_config = dict(scheduler.config) |
|
new_config["steps_offset"] = 1 |
|
scheduler._internal_dict = FrozenDict(new_config) |
|
|
|
if ( |
|
hasattr(scheduler.config, "clip_sample") |
|
and scheduler.config.clip_sample is True |
|
): |
|
deprecation_message = ( |
|
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." |
|
" `clip_sample` should be set to False in the configuration file. Please make sure to update the" |
|
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" |
|
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" |
|
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" |
|
) |
|
deprecate( |
|
"clip_sample not set", "1.0.0", deprecation_message, standard_warn=False |
|
) |
|
new_config = dict(scheduler.config) |
|
new_config["clip_sample"] = False |
|
scheduler._internal_dict = FrozenDict(new_config) |
|
|
|
is_unet_version_less_0_9_0 = hasattr( |
|
unet.config, "_diffusers_version" |
|
) and version.parse( |
|
version.parse(unet.config._diffusers_version).base_version |
|
) < version.parse( |
|
"0.9.0.dev0" |
|
) |
|
is_unet_sample_size_less_64 = ( |
|
hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 |
|
) |
|
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: |
|
deprecation_message = ( |
|
"The configuration file of the unet has set the default `sample_size` to smaller than" |
|
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" |
|
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" |
|
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" |
|
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" |
|
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" |
|
" in the config might lead to incorrect results in future versions. If you have downloaded this" |
|
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" |
|
" the `unet/config.json` file" |
|
) |
|
deprecate( |
|
"sample_size<64", "1.0.0", deprecation_message, standard_warn=False |
|
) |
|
new_config = dict(unet.config) |
|
new_config["sample_size"] = 64 |
|
unet._internal_dict = FrozenDict(new_config) |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
|
|
def enable_vae_slicing(self): |
|
self.vae.enable_slicing() |
|
|
|
def disable_vae_slicing(self): |
|
self.vae.disable_slicing() |
|
|
|
def enable_sequential_cpu_offload(self, gpu_id=0): |
|
if is_accelerate_available(): |
|
from accelerate import cpu_offload |
|
else: |
|
raise ImportError("Please install accelerate via `pip install accelerate`") |
|
|
|
device = torch.device(f"cuda:{gpu_id}") |
|
|
|
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: |
|
if cpu_offloaded_model is not None: |
|
cpu_offload(cpu_offloaded_model, device) |
|
|
|
@property |
|
def _execution_device(self): |
|
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): |
|
return self.device |
|
for module in self.unet.modules(): |
|
if ( |
|
hasattr(module, "_hf_hook") |
|
and hasattr(module._hf_hook, "execution_device") |
|
and module._hf_hook.execution_device is not None |
|
): |
|
return torch.device(module._hf_hook.execution_device) |
|
return self.device |
|
|
|
def _encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_videos_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
): |
|
batch_size = len(prompt) if isinstance(prompt, list) else 1 |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer( |
|
prompt, padding="longest", return_tensors="pt" |
|
).input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = self.tokenizer.batch_decode( |
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
if ( |
|
hasattr(self.text_encoder.config, "use_attention_mask") |
|
and self.text_encoder.config.use_attention_mask |
|
): |
|
attention_mask = text_inputs.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
text_embeddings = self.text_encoder( |
|
text_input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
text_embeddings = text_embeddings[0] |
|
|
|
|
|
bs_embed, seq_len, _ = text_embeddings.shape |
|
text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1) |
|
text_embeddings = text_embeddings.view( |
|
bs_embed * num_videos_per_prompt, seq_len, -1 |
|
) |
|
|
|
|
|
if do_classifier_free_guidance: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
max_length = text_input_ids.shape[-1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
if ( |
|
hasattr(self.text_encoder.config, "use_attention_mask") |
|
and self.text_encoder.config.use_attention_mask |
|
): |
|
attention_mask = uncond_input.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
uncond_embeddings = self.text_encoder( |
|
uncond_input.input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
uncond_embeddings = uncond_embeddings[0] |
|
|
|
|
|
seq_len = uncond_embeddings.shape[1] |
|
uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1) |
|
uncond_embeddings = uncond_embeddings.view( |
|
batch_size * num_videos_per_prompt, seq_len, -1 |
|
) |
|
|
|
|
|
|
|
|
|
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) |
|
|
|
return text_embeddings |
|
|
|
def decode_latents(self, latents): |
|
video_length = latents.shape[2] |
|
latents = 1 / 0.18215 * latents |
|
latents = rearrange(latents, "b c f h w -> (b f) c h w") |
|
|
|
video = [] |
|
for frame_idx in tqdm(range(latents.shape[0])): |
|
video.append(self.vae.decode(latents[frame_idx : frame_idx + 1]).sample) |
|
video = torch.cat(video) |
|
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) |
|
video = (video / 2 + 0.5).clamp(0, 1) |
|
|
|
video = video.cpu().float().numpy() |
|
return video |
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set( |
|
inspect.signature(self.scheduler.step).parameters.keys() |
|
) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set( |
|
inspect.signature(self.scheduler.step).parameters.keys() |
|
) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs(self, prompt, height, width, callback_steps): |
|
if not isinstance(prompt, str) and not isinstance(prompt, list): |
|
raise ValueError( |
|
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}" |
|
) |
|
|
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError( |
|
f"`height` and `width` have to be divisible by 8 but are {height} and {width}." |
|
) |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None |
|
and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
def prepare_latents( |
|
self, |
|
batch_size, |
|
num_channels_latents, |
|
video_length, |
|
height, |
|
width, |
|
dtype, |
|
device, |
|
generator, |
|
latents=None, |
|
): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
video_length, |
|
height // self.vae_scale_factor, |
|
width // self.vae_scale_factor, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
if latents is None: |
|
rand_device = "cpu" if device.type == "mps" else device |
|
|
|
if isinstance(generator, list): |
|
shape = shape |
|
|
|
latents = [ |
|
torch.randn( |
|
shape, generator=generator[i], device=rand_device, dtype=dtype |
|
) |
|
for i in range(batch_size) |
|
] |
|
latents = torch.cat(latents, dim=0).to(device) |
|
else: |
|
np.random.seed(generator.initial_seed() if generator is not None else 0) |
|
|
|
latents = np.random.standard_normal(shape) |
|
|
|
|
|
|
|
latents = torch.tensor(latents, dtype=dtype).to(device) |
|
else: |
|
if latents.shape != shape: |
|
raise ValueError( |
|
f"Unexpected latents shape, got {latents.shape}, expected {shape}" |
|
) |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]], |
|
video_length: Optional[int], |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_videos_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "tensor", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: Optional[int] = 1, |
|
**kwargs, |
|
): |
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs(prompt, height, width, callback_steps) |
|
|
|
|
|
|
|
batch_size = 1 |
|
if latents is not None: |
|
batch_size = latents.shape[0] |
|
if isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
prompt = prompt if isinstance(prompt, list) else [prompt] * batch_size |
|
if negative_prompt is not None: |
|
negative_prompt = ( |
|
negative_prompt |
|
if isinstance(negative_prompt, list) |
|
else [negative_prompt] * batch_size |
|
) |
|
text_embeddings = self._encode_prompt( |
|
prompt, |
|
device, |
|
num_videos_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.unet.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_videos_per_prompt, |
|
num_channels_latents, |
|
video_length, |
|
height, |
|
width, |
|
text_embeddings.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
latents_dtype = latents.dtype |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = ( |
|
torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
) |
|
latent_model_input = self.scheduler.scale_model_input( |
|
latent_model_input, t |
|
) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, t, encoder_hidden_states=text_embeddings |
|
).sample.to(dtype=latents_dtype) |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * ( |
|
noise_pred_text - noise_pred_uncond |
|
) |
|
|
|
|
|
latents = self.scheduler.step( |
|
noise_pred, t, latents, **extra_step_kwargs |
|
).prev_sample |
|
|
|
|
|
if i == len(timesteps) - 1 or ( |
|
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 |
|
): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
|
|
video = self.decode_latents(latents) |
|
|
|
|
|
if output_type == "tensor": |
|
video = torch.from_numpy(video) |
|
|
|
if not return_dict: |
|
return video |
|
|
|
return AnimationPipelineOutput(videos=video) |
|
|
|
|
|
class AnimationCtrlPipeline(AnimationPipeline): |
|
""" |
|
AnimationPipeline (_type_): Pipeline for AnimateDiff augmented with UniCtrl |
|
""" |
|
|
|
_optional_components = [] |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet3DConditionModel, |
|
scheduler: Union[ |
|
DDIMScheduler, |
|
PNDMScheduler, |
|
LMSDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
DPMSolverMultistepScheduler, |
|
], |
|
): |
|
super().__init__(vae, text_encoder, tokenizer, unet, scheduler) |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]], |
|
video_length: Optional[int], |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_videos_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "tensor", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: Optional[int] = 1, |
|
|
|
use_fp16: bool = False, |
|
**kwargs, |
|
): |
|
if use_fp16: |
|
print("Warning: using half percision for inferencing!") |
|
self.vae.to(dtype=torch.float16) |
|
self.unet.to(dtype=torch.float16) |
|
self.text_encoder.to(dtype=torch.float16) |
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs(prompt, height, width, callback_steps) |
|
|
|
|
|
|
|
batch_size = 1 |
|
if latents is not None: |
|
batch_size = latents.shape[0] |
|
if isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
prompt = prompt if isinstance(prompt, list) else [prompt] * batch_size |
|
if negative_prompt is not None: |
|
negative_prompt = ( |
|
negative_prompt |
|
if isinstance(negative_prompt, list) |
|
else [negative_prompt] * batch_size |
|
) |
|
text_embeddings = self._encode_prompt( |
|
prompt, |
|
device, |
|
num_videos_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.unet.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_videos_per_prompt, |
|
num_channels_latents, |
|
video_length, |
|
height, |
|
width, |
|
text_embeddings.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
latents_dtype = latents.dtype |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
latents = latents.to(latents_dtype) |
|
motion_latents = latents.clone() |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
current_timesteps = timesteps |
|
for i, t in enumerate(current_timesteps): |
|
|
|
motion_latents = latents.clone() |
|
|
|
latent_model_input = ( |
|
torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
) |
|
latent_model_input = self.scheduler.scale_model_input( |
|
latent_model_input, t |
|
) |
|
|
|
motion_latent_model_input = ( |
|
torch.cat([motion_latents] * 2) |
|
if do_classifier_free_guidance |
|
else motion_latents |
|
) |
|
motion_latent_model_input = self.scheduler.scale_model_input( |
|
motion_latent_model_input, t |
|
) |
|
|
|
if do_classifier_free_guidance: |
|
concat_latent_model_input = torch.stack( |
|
[ |
|
latent_model_input[0], |
|
motion_latent_model_input[0], |
|
latent_model_input[1], |
|
motion_latent_model_input[1], |
|
], |
|
dim=0, |
|
) |
|
concat_prompt_embeds = torch.stack( |
|
[ |
|
text_embeddings[0], |
|
text_embeddings[0], |
|
text_embeddings[1], |
|
text_embeddings[1], |
|
], |
|
dim=0, |
|
) |
|
else: |
|
concat_latent_model_input = torch.cat( |
|
[ |
|
latent_model_input, |
|
motion_latent_model_input, |
|
], |
|
dim=0, |
|
) |
|
concat_prompt_embeds = torch.cat( |
|
[ |
|
text_embeddings, |
|
text_embeddings, |
|
], |
|
dim=0, |
|
) |
|
|
|
|
|
concat_noise_pred = self.unet( |
|
concat_latent_model_input, |
|
t, |
|
encoder_hidden_states=concat_prompt_embeds, |
|
).sample.to(dtype=latents_dtype) |
|
|
|
|
|
if do_classifier_free_guidance: |
|
( |
|
noise_pred_uncond, |
|
motion_noise_pred_uncond, |
|
noise_pred_text, |
|
motion_noise_pred_text, |
|
) = concat_noise_pred.chunk(4, dim=0) |
|
|
|
noise_pred = noise_pred_uncond + guidance_scale * ( |
|
noise_pred_text - noise_pred_uncond |
|
) |
|
motion_noise_pred = motion_noise_pred_uncond + guidance_scale * ( |
|
motion_noise_pred_text - motion_noise_pred_uncond |
|
) |
|
|
|
else: |
|
( |
|
noise_pred, |
|
motion_noise_pred, |
|
) = concat_noise_pred.chunk(2, dim=0) |
|
|
|
|
|
latents = self.scheduler.step( |
|
noise_pred, t, latents, **extra_step_kwargs |
|
).prev_sample |
|
|
|
motion_latents = self.scheduler.step( |
|
motion_noise_pred, t, motion_latents, **extra_step_kwargs |
|
).prev_sample |
|
|
|
|
|
if i == len(current_timesteps) - 1 or ( |
|
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 |
|
): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
|
|
video = self.decode_latents(latents) |
|
|
|
|
|
if output_type == "tensor": |
|
video = torch.from_numpy(video) |
|
|
|
if not return_dict: |
|
return video |
|
|
|
return AnimationPipelineOutput(videos=video) |
|
|