Spaces:
Running
Running
File size: 7,013 Bytes
bf0a127 2d5ec8b bf0a127 82f5cc2 9f406c4 82f5cc2 9f406c4 82f5cc2 9f406c4 82f5cc2 78e14e1 82f5cc2 bf0a127 9f406c4 bf0a127 ed2ee73 f2850f7 1c06304 bf0a127 6080bab cc075bf bcebdbd 4c179ac 4389786 b6d7961 9f406c4 6080bab bf0a127 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import sys, os
if sys.platform == "darwin":
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
import logging
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
logging.basicConfig(level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s")
logger = logging.getLogger(__name__)
import torch
import argparse
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import gradio as gr
import webbrowser
net_g = None
def get_text(text, language_str, hps):
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert = get_bert(norm_text, word2ph, language_str)
del word2ph
assert bert.shape[-1] == len(phone)
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, phone, tone, language
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid):
global net_g
bert, phones, tones, lang_ids = get_text(text, "ZH", hps)
with torch.no_grad():
x_tst=phones.to(device).unsqueeze(0)
tones=tones.to(device).unsqueeze(0)
lang_ids=lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = net_g.infer(x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, sdp_ratio=sdp_ratio
, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy()
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
return audio
def tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale):
with torch.no_grad():
audio = infer(text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker)
return "Success", (hps.data.sampling_rate, audio)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_dir", default="./logs/Aatrox/G_2000.pth", help="path of your model")
parser.add_argument("--config_dir", default="./configs/config.json", help="path of your config file")
parser.add_argument("--share", default=False, help="make link public")
parser.add_argument("-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log")
args = parser.parse_args()
if args.debug:
logger.info("Enable DEBUG-LEVEL log")
logging.basicConfig(level=logging.DEBUG)
hps = utils.get_hparams_from_file(args.config_dir)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
'''
device = (
"cuda:0"
if torch.cuda.is_available()
else (
"mps"
if sys.platform == "darwin" and torch.backends.mps.is_available()
else "cpu"
)
)
'''
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model).to(device)
_ = net_g.eval()
_ = utils.load_checkpoint(args.model_dir, net_g, None, skip_optimizer=True)
speaker_ids = hps.data.spk2id
speakers = list(speaker_ids.keys())
with gr.Blocks() as app:
with gr.Row():
with gr.Column():
gr.Markdown(value="""
【AI剑魔①】在线语音合成(Bert-Vits2)\n
作者:Xz乔希 https://space.bilibili.com/5859321\n
声音归属:《英雄联盟》暗裔剑魔·亚托克斯\n
Bert-VITS2项目:https://github.com/Stardust-minus/Bert-VITS2\n
【AI剑魔②】https://huggingface.co/spaces/XzJosh/Jianmo-Bert-VITS2\n
【AI剑魔③】https://huggingface.co/spaces/XzJosh/JM-Bert-VITS2\n
使用本模型请严格遵守法律法规!\n
发布二创作品请标注本项目作者及链接、作品使用Bert-VITS2 AI生成!\n
""")
text = gr.TextArea(label="Text", placeholder="Input Text Here",
value="我是亚托克斯!我是世界的终结者!")
speaker = gr.Dropdown(choices=speakers, value=speakers[0], label='Speaker')
sdp_ratio = gr.Slider(minimum=0.1, maximum=1, value=0.2, step=0.01, label='SDP/DP混合比')
noise_scale = gr.Slider(minimum=0.1, maximum=1, value=0.5, step=0.01, label='感情调节')
noise_scale_w = gr.Slider(minimum=0.1, maximum=1, value=0.9, step=0.01, label='音素长度')
length_scale = gr.Slider(minimum=0.1, maximum=2, value=1, step=0.01, label='生成长度')
btn = gr.Button("点击生成", variant="primary")
with gr.Column():
text_output = gr.Textbox(label="Message")
audio_output = gr.Audio(label="Output Audio")
gr.Markdown(value="""
【AI塔菲】https://huggingface.co/spaces/XzJosh/Taffy-Bert-VITS2\n
【AI东雪莲】https://huggingface.co/spaces/XzJosh/Azuma-Bert-VITS2\n
【AI奶绿】https://huggingface.co/spaces/XzJosh/LAPLACE-Bert-VITS2\n
【AI尼奈】https://huggingface.co/spaces/XzJosh/nine1-Bert-VITS2\n
【AI珈乐】https://huggingface.co/spaces/XzJosh/Carol-Bert-VITS2\n
【AI电棍】https://huggingface.co/spaces/XzJosh/otto-Bert-VITS2\n
【AI七海】https://huggingface.co/spaces/XzJosh/Nana7mi-Bert-VITS2\n
【AI阿梓】https://huggingface.co/spaces/XzJosh/Azusa-Bert-VITS2\n
【AI星瞳】https://huggingface.co/spaces/XzJosh/XingTong-Bert-VITS2\n
【AI向晚】https://huggingface.co/spaces/XzJosh/Ava-Bert-VITS2\n
【AI嘉然】https://huggingface.co/spaces/XzJosh/Diana-Bert-VITS2\n
""")
btn.click(tts_fn,
inputs=[text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale],
outputs=[text_output, audio_output])
# webbrowser.open("http://127.0.0.1:6006")
# app.launch(server_port=6006, show_error=True)
app.launch(show_error=True)
|