Spaces:
Runtime error
Runtime error
import gradio as gr | |
import webbrowser | |
import os | |
import json | |
import subprocess | |
import shutil | |
def get_path(data_dir): | |
start_path = os.path.join("./data", data_dir) | |
lbl_path = os.path.join(start_path, "esd.list") | |
train_path = os.path.join(start_path, "train.list") | |
val_path = os.path.join(start_path, "val.list") | |
config_path = os.path.join(start_path, "configs", "config.json") | |
return start_path, lbl_path, train_path, val_path, config_path | |
def generate_config(data_dir, batch_size): | |
assert data_dir != "", "数据集名称不能为空" | |
start_path, _, train_path, val_path, config_path = get_path(data_dir) | |
if os.path.isfile(config_path): | |
config = json.load(open(config_path)) | |
else: | |
config = json.load(open("configs/config.json")) | |
config["data"]["training_files"] = train_path | |
config["data"]["validation_files"] = val_path | |
config["train"]["batch_size"] = batch_size | |
out_path = os.path.join(start_path, "configs") | |
if not os.path.isdir(out_path): | |
os.mkdir(out_path) | |
model_path = os.path.join(start_path, "models") | |
if not os.path.isdir(model_path): | |
os.mkdir(model_path) | |
with open(config_path, "w", encoding="utf-8") as f: | |
json.dump(config, f, indent=4) | |
if not os.path.exists("config.yml"): | |
shutil.copy(src="default_config.yml", dst="config.yml") | |
return "配置文件生成完成" | |
def resample(data_dir): | |
assert data_dir != "", "数据集名称不能为空" | |
start_path, _, _, _, config_path = get_path(data_dir) | |
in_dir = os.path.join(start_path, "raw") | |
out_dir = os.path.join(start_path, "wavs") | |
subprocess.run( | |
f"python resample.py " | |
f"--sr 44100 " | |
f"--in_dir {in_dir} " | |
f"--out_dir {out_dir} ", | |
shell=True, | |
) | |
return "音频文件预处理完成" | |
def preprocess_text(data_dir): | |
assert data_dir != "", "数据集名称不能为空" | |
start_path, lbl_path, train_path, val_path, config_path = get_path(data_dir) | |
lines = open(lbl_path, "r", encoding="utf-8").readlines() | |
with open(lbl_path, "w", encoding="utf-8") as f: | |
for line in lines: | |
path, spk, language, text = line.strip().split("|") | |
path = os.path.join(start_path, "wavs", os.path.basename(path)) | |
f.writelines(f"{path}|{spk}|{language}|{text}\n") | |
subprocess.run( | |
f"python preprocess_text.py " | |
f"--transcription-path {lbl_path} " | |
f"--train-path {train_path} " | |
f"--val-path {val_path} " | |
f"--config-path {config_path}", | |
shell=True, | |
) | |
return "标签文件预处理完成" | |
def bert_gen(data_dir): | |
assert data_dir != "", "数据集名称不能为空" | |
_, _, _, _, config_path = get_path(data_dir) | |
subprocess.run( | |
f"python bert_gen.py " f"--config {config_path}", | |
shell=True, | |
) | |
return "BERT 特征文件生成完成" | |
def clap_gen(data_dir): | |
assert data_dir != "", "数据集名称不能为空" | |
_, _, _, _, config_path = get_path(data_dir) | |
subprocess.run( | |
f"python clap_gen.py " f"--config {config_path}", | |
shell=True, | |
) | |
return "CLAP 特征文件生成完成" | |
if __name__ == "__main__": | |
with gr.Blocks() as app: | |
with gr.Row(): | |
with gr.Column(): | |
_ = gr.Markdown( | |
value="# Bert-VITS2 数据预处理\n" | |
"## 预先准备:\n" | |
"下载 BERT 和 CLAP 模型:\n" | |
"- [中文 RoBERTa](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large)\n" | |
"- [日文 DeBERTa](https://huggingface.co/ku-nlp/deberta-v2-large-japanese-char-wwm)\n" | |
"- [英文 DeBERTa](https://huggingface.co/microsoft/deberta-v3-large)\n" | |
"- [CLAP](https://huggingface.co/laion/clap-htsat-fused)\n" | |
"\n" | |
"将 BERT 模型放置到 `bert` 文件夹下,CLAP 模型放置到 `emotional` 文件夹下,覆盖同名文件夹。\n" | |
"\n" | |
"数据准备:\n" | |
"将数据放置在 data 文件夹下,按照如下结构组织:\n" | |
"\n" | |
"```\n" | |
"├── data\n" | |
"│ ├── {你的数据集名称}\n" | |
"│ │ ├── esd.list\n" | |
"│ │ ├── raw\n" | |
"│ │ │ ├── ****.wav\n" | |
"│ │ │ ├── ****.wav\n" | |
"│ │ │ ├── ...\n" | |
"```\n" | |
"\n" | |
"其中,`raw` 文件夹下保存所有的音频文件,`esd.list` 文件为标签文本,格式为\n" | |
"\n" | |
"```\n" | |
"****.wav|{说话人名}|{语言 ID}|{标签文本}\n" | |
"```\n" | |
"\n" | |
"例如:\n" | |
"```\n" | |
"vo_ABDLQ001_1_paimon_02.wav|派蒙|ZH|没什么没什么,只是平时他总是站在这里,有点奇怪而已。\n" | |
"noa_501_0001.wav|NOA|JP|そうだね、油断しないのはとても大事なことだと思う\n" | |
"Albedo_vo_ABDLQ002_4_albedo_01.wav|Albedo|EN|Who are you? Why did you alarm them?\n" | |
"...\n" | |
"```\n" | |
) | |
data_dir = gr.Textbox( | |
label="数据集名称", | |
placeholder="你放置在 data 文件夹下的数据集所在文件夹的名称,如 data/genshin 则填 genshin", | |
) | |
info = gr.Textbox(label="状态信息") | |
_ = gr.Markdown(value="## 第一步:生成配置文件") | |
with gr.Row(): | |
batch_size = gr.Slider( | |
label="批大小(Batch size):24 GB 显存可用 12", | |
value=8, | |
minimum=1, | |
maximum=64, | |
step=1, | |
) | |
generate_config_btn = gr.Button(value="执行", variant="primary") | |
_ = gr.Markdown(value="## 第二步:预处理音频文件") | |
resample_btn = gr.Button(value="执行", variant="primary") | |
_ = gr.Markdown(value="## 第三步:预处理标签文件") | |
preprocess_text_btn = gr.Button(value="执行", variant="primary") | |
_ = gr.Markdown(value="## 第四步:生成 BERT 特征文件") | |
bert_gen_btn = gr.Button(value="执行", variant="primary") | |
_ = gr.Markdown(value="## 第五步:生成 CLAP 特征文件") | |
clap_gen_btn = gr.Button(value="执行", variant="primary") | |
_ = gr.Markdown( | |
value="## 训练模型及部署:\n" | |
"修改根目录下的 `config.yml` 中 `dataset_path` 一项为 `data/{你的数据集名称}`\n" | |
"- 训练:将[预训练模型文件](https://openi.pcl.ac.cn/Stardust_minus/Bert-VITS2/modelmanage/show_model)(`D_0.pth`、`DUR_0.pth` 和 `G_0.pth`)放到 `data/{你的数据集名称}/models` 文件夹下,执行 `torchrun --nproc_per_node=1 train_ms.py` 命令(多卡运行可参考 `run_MnodesAndMgpus.sh` 中的命令。\n" | |
"- 部署:修改根目录下的 `config.yml` 中 `webui` 下 `model` 一项为 `models/{权重文件名}.pth` (如 G_10000.pth),然后执行 `python webui.py`" | |
) | |
generate_config_btn.click( | |
generate_config, inputs=[data_dir, batch_size], outputs=[info] | |
) | |
resample_btn.click(resample, inputs=[data_dir], outputs=[info]) | |
preprocess_text_btn.click(preprocess_text, inputs=[data_dir], outputs=[info]) | |
bert_gen_btn.click(bert_gen, inputs=[data_dir], outputs=[info]) | |
clap_gen_btn.click(clap_gen, inputs=[data_dir], outputs=[info]) | |
webbrowser.open("http://127.0.0.1:7860") | |
app.launch(share=False, server_port=7860) | |