File size: 15,544 Bytes
2fe559d
 
bf0dde6
6ae47ab
 
 
 
9d3080c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ae47ab
 
 
 
9d3080c
 
 
 
 
 
 
 
 
6ae47ab
514e8f4
6ae47ab
 
 
514e8f4
9d3080c
 
 
 
 
 
 
6ae47ab
2fe559d
9d3080c
 
 
 
6ae47ab
9d3080c
 
 
 
 
 
 
 
2fe559d
9d3080c
 
2fe559d
 
 
 
 
 
9d3080c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fe559d
 
 
 
 
 
9d3080c
 
 
 
 
 
e5f651c
 
 
 
 
 
 
 
 
 
 
 
2fe559d
e5f651c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d3080c
6ae47ab
9d3080c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fe559d
 
 
 
 
 
 
 
9d3080c
 
 
e5f651c
 
 
 
9d3080c
e5f651c
9d3080c
e5f651c
9d3080c
 
e5f651c
9d3080c
 
e5f651c
 
9d3080c
 
 
 
 
 
 
 
 
 
2fe559d
 
 
bf0dde6
6ae47ab
9d3080c
 
 
 
2fe559d
 
 
 
9d3080c
2fe559d
 
 
 
 
 
9d3080c
2fe559d
9d3080c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ae47ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d3080c
 
6ae47ab
 
 
 
 
 
 
 
 
 
 
 
2fe559d
9d3080c
6ae47ab
9d3080c
6ae47ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf0dde6
6ae47ab
9d3080c
6ae47ab
9d3080c
6ae47ab
 
9d3080c
 
6ae47ab
9d3080c
 
 
6ae47ab
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
import os,re
import gradio as gr

gpt_path = os.environ.get(
    "gpt_path", "models/Taffy/Taffy-e5.ckpt"
)
sovits_path = os.environ.get("sovits_path", "models/Taffy/Taffy_e20_s1020.pth")
cnhubert_base_path = os.environ.get(
    "cnhubert_base_path", "pretrained_models/chinese-hubert-base"
)
bert_path = os.environ.get(
    "bert_path", "pretrained_models/chinese-roberta-wwm-ext-large"
)
infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
infer_ttswebui = int(infer_ttswebui)
if "_CUDA_VISIBLE_DEVICES" in os.environ:
    os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
is_half = eval(os.environ.get("is_half", "True"))
import gradio as gr
from transformers import AutoModelForMaskedLM, AutoTokenizer
import numpy as np
import librosa,torch
from feature_extractor import cnhubert
cnhubert.cnhubert_base_path=cnhubert_base_path
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
import nltk
nltk.download('cmudict')

from module.models import SynthesizerTrn
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from text import cleaned_text_to_sequence
from text.cleaner import clean_text
from time import time as ttime
from module.mel_processing import spectrogram_torch
from my_utils import load_audio

device = "cuda" if torch.cuda.is_available() else "cpu"

is_half = eval(
    os.environ.get("is_half", "True" if torch.cuda.is_available() else "False")
)

tokenizer = AutoTokenizer.from_pretrained(bert_path)
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
if is_half == True:
    bert_model = bert_model.half().to(device)
else:
    bert_model = bert_model.to(device)


# bert_model=bert_model.to(device)
def get_bert_feature(text, word2ph):
    with torch.no_grad():
        inputs = tokenizer(text, return_tensors="pt")
        for i in inputs:
            inputs[i] = inputs[i].to(device)  #####输入是long不用管精度问题,精度随bert_model
        res = bert_model(**inputs, output_hidden_states=True)
        res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
    assert len(word2ph) == len(text)
    phone_level_feature = []
    for i in range(len(word2ph)):
        repeat_feature = res[i].repeat(word2ph[i], 1)
        phone_level_feature.append(repeat_feature)
    phone_level_feature = torch.cat(phone_level_feature, dim=0)
    # if(is_half==True):phone_level_feature=phone_level_feature.half()
    return phone_level_feature.T


n_semantic = 1024

dict_s2=torch.load(sovits_path,map_location="cpu")
hps=dict_s2["config"]

class DictToAttrRecursive(dict):
    def __init__(self, input_dict):
        super().__init__(input_dict)
        for key, value in input_dict.items():
            if isinstance(value, dict):
                value = DictToAttrRecursive(value)
            self[key] = value
            setattr(self, key, value)

    def __getattr__(self, item):
        try:
            return self[item]
        except KeyError:
            raise AttributeError(f"Attribute {item} not found")

    def __setattr__(self, key, value):
        if isinstance(value, dict):
            value = DictToAttrRecursive(value)
        super(DictToAttrRecursive, self).__setitem__(key, value)
        super().__setattr__(key, value)

    def __delattr__(self, item):
        try:
            del self[item]
        except KeyError:
            raise AttributeError(f"Attribute {item} not found")


hps = DictToAttrRecursive(hps)

hps.model.semantic_frame_rate = "25hz"
dict_s1 = torch.load(gpt_path, map_location="cpu")
config = dict_s1["config"]
ssl_model = cnhubert.get_model()
if is_half == True:
    ssl_model = ssl_model.half().to(device)
else:
    ssl_model = ssl_model.to(device)

def change_sovits_weights(sovits_path):
    global vq_model,hps
    dict_s2=torch.load(sovits_path,map_location="cpu")
    hps=dict_s2["config"]
    hps = DictToAttrRecursive(hps)
    hps.model.semantic_frame_rate = "25hz"
    vq_model = SynthesizerTrn(
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model
    )
    del vq_model.enc_q
    if is_half == True:
        vq_model = vq_model.half().to(device)
    else:
        vq_model = vq_model.to(device)
    vq_model.eval()
    print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
change_sovits_weights(sovits_path)

def change_gpt_weights(gpt_path):
    global hz,max_sec,t2s_model,config
    hz = 50
    dict_s1 = torch.load(gpt_path, map_location="cpu")
    config = dict_s1["config"]
    max_sec = config["data"]["max_sec"]
    t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
    t2s_model.load_state_dict(dict_s1["weight"])
    if is_half == True:
        t2s_model = t2s_model.half()
    t2s_model = t2s_model.to(device)
    t2s_model.eval()
    total = sum([param.nelement() for param in t2s_model.parameters()])
    print("Number of parameter: %.2fM" % (total / 1e6))
change_gpt_weights(gpt_path)


def get_spepc(hps, filename):
    audio = load_audio(filename, int(hps.data.sampling_rate))
    audio = torch.FloatTensor(audio)
    audio_norm = audio
    audio_norm = audio_norm.unsqueeze(0)
    spec = spectrogram_torch(
        audio_norm,
        hps.data.filter_length,
        hps.data.sampling_rate,
        hps.data.hop_length,
        hps.data.win_length,
        center=False,
    )
    return spec


dict_language = {"中文": "zh", "英文": "en", "日文": "ja"}


def get_tts_wav(selected_text, prompt_text, prompt_language, text, text_language):
    ref_wav_path = text_to_audio_mappings.get(selected_text, "")
    if not ref_wav_path:
        print("Audio file not found for the selected text.")
        return
    t0 = ttime()
    prompt_text = prompt_text.strip("\n")
    prompt_language, text = prompt_language, text.strip("\n")
    zero_wav = np.zeros(
        int(hps.data.sampling_rate * 0.3),
        dtype=np.float16 if is_half == True else np.float32,
    )
    with torch.no_grad():
        wav16k, sr = librosa.load(ref_wav_path, sr=16000)
        wav16k = torch.from_numpy(wav16k)
        zero_wav_torch = torch.from_numpy(zero_wav)
        if is_half == True:
            wav16k = wav16k.half().to(device)
            zero_wav_torch = zero_wav_torch.half().to(device)
        else:
            wav16k = wav16k.to(device)
            zero_wav_torch = zero_wav_torch.to(device)
        wav16k=torch.cat([wav16k,zero_wav_torch])
        ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
            "last_hidden_state"
        ].transpose(
            1, 2
        )  # .float()
        codes = vq_model.extract_latent(ssl_content)
        prompt_semantic = codes[0, 0]
    t1 = ttime()
    prompt_language = dict_language[prompt_language]
    text_language = dict_language[text_language]
    phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language)
    phones1 = cleaned_text_to_sequence(phones1)
    texts = text.split("\n")
    audio_opt = []

    for text in texts:
        # 解决输入目标文本的空行导致报错的问题
        if (len(text.strip()) == 0):
            continue
        phones2, word2ph2, norm_text2 = clean_text(text, text_language)
        phones2 = cleaned_text_to_sequence(phones2)
        if prompt_language == "zh":
            bert1 = get_bert_feature(norm_text1, word2ph1).to(device)
        else:
            bert1 = torch.zeros(
                (1024, len(phones1)),
                dtype=torch.float16 if is_half == True else torch.float32,
            ).to(device)
        if text_language == "zh":
            bert2 = get_bert_feature(norm_text2, word2ph2).to(device)
        else:
            bert2 = torch.zeros((1024, len(phones2))).to(bert1)
        bert = torch.cat([bert1, bert2], 1)

        all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
        prompt = prompt_semantic.unsqueeze(0).to(device)
        t2 = ttime()
        with torch.no_grad():
            # pred_semantic = t2s_model.model.infer(
            pred_semantic, idx = t2s_model.model.infer_panel(
                all_phoneme_ids,
                all_phoneme_len,
                prompt,
                bert,
                # prompt_phone_len=ph_offset,
                top_k=config["inference"]["top_k"],
                early_stop_num=hz * max_sec,
            )
        t3 = ttime()
        # print(pred_semantic.shape,idx)
        pred_semantic = pred_semantic[:, -idx:].unsqueeze(
            0
        )  # .unsqueeze(0)#mq要多unsqueeze一次
        refer = get_spepc(hps, ref_wav_path)  # .to(device)
        if is_half == True:
            refer = refer.half().to(device)
        else:
            refer = refer.to(device)
        # audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
        audio = (
            vq_model.decode(
                pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
            )
            .detach()
            .cpu()
            .numpy()[0, 0]
        )  ###试试重建不带上prompt部分
        audio_opt.append(audio)
        audio_opt.append(zero_wav)
        t4 = ttime()
    print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
    yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
        np.int16
    )


splits = {
    ",",
    "。",
    "?",
    "!",
    ",",
    ".",
    "?",
    "!",
    "~",
    ":",
    ":",
    "—",
    "…",
}  # 不考虑省略号


def split(todo_text):
    todo_text = todo_text.replace("……", "。").replace("——", ",")
    if todo_text[-1] not in splits:
        todo_text += "。"
    i_split_head = i_split_tail = 0
    len_text = len(todo_text)
    todo_texts = []
    while 1:
        if i_split_head >= len_text:
            break  # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
        if todo_text[i_split_head] in splits:
            i_split_head += 1
            todo_texts.append(todo_text[i_split_tail:i_split_head])
            i_split_tail = i_split_head
        else:
            i_split_head += 1
    return todo_texts


def cut1(inp):
    inp = inp.strip("\n")
    inps = split(inp)
    split_idx = list(range(0, len(inps), 5))
    split_idx[-1] = None
    if len(split_idx) > 1:
        opts = []
        for idx in range(len(split_idx) - 1):
            opts.append("".join(inps[split_idx[idx] : split_idx[idx + 1]]))
    else:
        opts = [inp]
    return "\n".join(opts)


def cut2(inp):
    inp = inp.strip("\n")
    inps = split(inp)
    if len(inps) < 2:
        return [inp]
    opts = []
    summ = 0
    tmp_str = ""
    for i in range(len(inps)):
        summ += len(inps[i])
        tmp_str += inps[i]
        if summ > 50:
            summ = 0
            opts.append(tmp_str)
            tmp_str = ""
    if tmp_str != "":
        opts.append(tmp_str)
    if len(opts[-1]) < 50:  ##如果最后一个太短了,和前一个合一起
        opts[-2] = opts[-2] + opts[-1]
        opts = opts[:-1]
    return "\n".join(opts)


def cut3(inp):
    inp = inp.strip("\n")
    return "\n".join(["%s。" % item for item in inp.strip("。").split("。")])

def scan_audio_files(folder_path):
    """ 扫描指定文件夹获取音频文件列表 """
    return [f for f in os.listdir(folder_path) if f.endswith('.wav')]

def load_audio_text_mappings(folder_path, list_file_name):
    text_to_audio_mappings = {}
    audio_to_text_mappings = {}
    with open(os.path.join(folder_path, list_file_name), 'r', encoding='utf-8') as file:
        for line in file:
            parts = line.strip().split('|')
            if len(parts) >= 4:
                audio_file_name = parts[0]
                text = parts[3]
                audio_file_path = os.path.join(folder_path, audio_file_name)
                text_to_audio_mappings[text] = audio_file_path
                audio_to_text_mappings[audio_file_path] = text
    return text_to_audio_mappings, audio_to_text_mappings

audio_folder_path = 'audio/Taffy'
text_to_audio_mappings, audio_to_text_mappings = load_audio_text_mappings(audio_folder_path, 'Taffy.list')

with gr.Blocks(title="GPT-SoVITS WebUI") as app:
    gr.Markdown(value="""
    # <center>【AI塔菲】在线语音生成(GPT-SoVITS)\n
    
    ### <center>模型作者:Xz乔希 https://space.bilibili.com/5859321\n
    ### <center>GPT-SoVITS在线合集:https://www.modelscope.cn/studios/xzjosh/GPT-SoVITS\n
    ### <center>数据集下载:https://huggingface.co/datasets/XzJosh/audiodataset\n
    ### <center>声音归属:永雏塔菲 https://space.bilibili.com/1265680561\n
    ### <center>GPT-SoVITS项目:https://github.com/RVC-Boss/GPT-SoVITS\n
    ### <center>使用本模型请严格遵守法律法规!发布二创作品请标注本项目作者及链接、作品使用GPT-SoVITS AI生成!\n
    ### <center>⚠️在线端不稳定且生成速度较慢,强烈建议下载模型本地推理!\n
                """)
    # with gr.Tabs():
    #     with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")):
    with gr.Group():
        gr.Markdown(value="*参考音频选择(必选)")
        with gr.Row():
            audio_select = gr.Dropdown(label="选择参考音频(不建议选较长的)", choices=list(text_to_audio_mappings.keys()))
            ref_audio = gr.Audio(label="参考音频试听")
            ref_text = gr.Textbox(label="参考音频文本")
            
    # 定义更新参考文本的函数
        def update_ref_text_and_audio(selected_text):
            audio_path = text_to_audio_mappings.get(selected_text, "")
            return selected_text, audio_path

    # 绑定下拉菜单的变化到更新函数
        audio_select.change(update_ref_text_and_audio, [audio_select], [ref_text, ref_audio])

    # 其他 Gradio 组件和功能
        prompt_language = gr.Dropdown(
            label="参考音频语种", choices=["中文", "英文", "日文"], value="中文"
        )
        gr.Markdown(value="*请填写需要合成的目标文本")
        with gr.Row():
            text = gr.Textbox(label="需要合成的文本", value="")
            text_language = gr.Dropdown(
                label="需要合成的语种", choices=["中文", "英文", "日文"], value="中文"
            )
            inference_button = gr.Button("合成语音", variant="primary")
            output = gr.Audio(label="输出的语音")
        inference_button.click(
            get_tts_wav,
            [audio_select, ref_text, prompt_language, text, text_language],
            [output],
        )


    gr.Markdown(value="文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。")
    with gr.Row():
        text_inp = gr.Textbox(label="需要合成的切分前文本", value="")
        button1 = gr.Button("凑五句一切", variant="primary")
        button2 = gr.Button("凑50字一切", variant="primary")
        button3 = gr.Button("按中文句号。切", variant="primary")
        text_opt = gr.Textbox(label="切分后文本", value="")
        button1.click(cut1, [text_inp], [text_opt])
        button2.click(cut2, [text_inp], [text_opt])
        button3.click(cut3, [text_inp], [text_opt])

app.queue(max_size=10)
app.launch(inbrowser=True)