badXT-GPT-SoVITS / AR /modules /embedding_onnx.py
XzJosh's picture
Upload 72 files
bf0dde6 verified
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/embedding.py
import math
import torch
from torch import nn
class TokenEmbedding(nn.Module):
def __init__(
self,
embedding_dim: int,
vocab_size: int,
dropout: float = 0.0,
):
super().__init__()
self.vocab_size = vocab_size
self.embedding_dim = embedding_dim
self.dropout = torch.nn.Dropout(p=dropout)
self.word_embeddings = nn.Embedding(self.vocab_size, self.embedding_dim)
@property
def weight(self) -> torch.Tensor:
return self.word_embeddings.weight
def embedding(self, index: int) -> torch.Tensor:
return self.word_embeddings.weight[index : index + 1]
def forward(self, x: torch.Tensor):
x = self.word_embeddings(x)
x = self.dropout(x)
return x
class SinePositionalEmbedding(nn.Module):
def __init__(
self,
embedding_dim: int,
dropout: float = 0.0,
scale: bool = False,
alpha: bool = False,
):
super().__init__()
self.embedding_dim = embedding_dim
self.x_scale = math.sqrt(embedding_dim) if scale else 1.0
self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha)
self.dropout = torch.nn.Dropout(p=dropout)
self.reverse = False
self.div_term = torch.exp(torch.arange(0, self.embedding_dim, 2) * -(math.log(10000.0) / self.embedding_dim))
def extend_pe(self, x):
position = torch.cumsum(torch.ones_like(x[:,:,0]), dim=1).transpose(0, 1)
scpe = (position * self.div_term).unsqueeze(0)
pe = torch.cat([torch.sin(scpe), torch.cos(scpe)]).permute(1, 2, 0)
pe = pe.contiguous().view(1, -1, self.embedding_dim)
return pe
def forward(self, x: torch.Tensor) -> torch.Tensor:
pe = self.extend_pe(x)
output = x.unsqueeze(-1) if x.ndim == 2 else x
output = output * self.x_scale + self.alpha * pe
return self.dropout(output)