Spaces:
Running
Running
File size: 18,706 Bytes
48c04e9 bf0dde6 6ae47ab f3c2271 6ae47ab f3c2271 9d3080c 6ae47ab 9d3080c 6ae47ab 514e8f4 6ae47ab 514e8f4 9d3080c 6ae47ab 9d3080c 0d9b885 9d3080c e5f651c 48c04e9 e5f651c 9d3080c 6ae47ab 9d3080c 48c04e9 2fe559d 9d3080c e5f651c 9d3080c e5f651c 9d3080c e5f651c 9d3080c e5f651c 9d3080c e5f651c 9d3080c 48c04e9 bf0dde6 48c04e9 6ae47ab 9d3080c 48c04e9 9d3080c 48c04e9 9d3080c 48c04e9 9d3080c 0c3fefb 6ae47ab f3c2271 9d3080c 6ae47ab f3c2271 6ae47ab 0d9b885 6ae47ab 39e81fa 6ae47ab 48c04e9 9d3080c 0c3fefb 9d3080c 0c3fefb 6ae47ab 0d9b885 bf0dde6 6ae47ab 9d3080c 6ae47ab 694d3e8 fe07bb5 0c3fefb fe07bb5 0c3fefb fe07bb5 6ae47ab 4915278 9d3080c fe07bb5 9d3080c 6ae47ab 0c3fefb 6ae47ab 0c3fefb 6ae47ab 0c3fefb 6ae47ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
import os,re,logging
logging.getLogger("markdown_it").setLevel(logging.ERROR)
logging.getLogger("urllib3").setLevel(logging.ERROR)
logging.getLogger("httpcore").setLevel(logging.ERROR)
logging.getLogger("httpx").setLevel(logging.ERROR)
logging.getLogger("asyncio").setLevel(logging.ERROR)
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
import pdb
gpt_path = os.environ.get(
"gpt_path", "models/maimai/maimai-e21.ckpt"
)
sovits_path = os.environ.get("sovits_path", "models/maimai/maimai_e55_s1210.pth")
cnhubert_base_path = os.environ.get(
"cnhubert_base_path", "pretrained_models/chinese-hubert-base"
)
bert_path = os.environ.get(
"bert_path", "pretrained_models/chinese-roberta-wwm-ext-large"
)
infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
infer_ttswebui = int(infer_ttswebui)
if "_CUDA_VISIBLE_DEVICES" in os.environ:
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
is_half = eval(os.environ.get("is_half", "True"))
import gradio as gr
from transformers import AutoModelForMaskedLM, AutoTokenizer
import numpy as np
import librosa,torch
from feature_extractor import cnhubert
cnhubert.cnhubert_base_path=cnhubert_base_path
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
import nltk
nltk.download('cmudict')
from module.models import SynthesizerTrn
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from text import cleaned_text_to_sequence
from text.cleaner import clean_text
from time import time as ttime
from module.mel_processing import spectrogram_torch
from my_utils import load_audio
device = "cuda" if torch.cuda.is_available() else "cpu"
is_half = eval(
os.environ.get("is_half", "True" if torch.cuda.is_available() else "False")
)
tokenizer = AutoTokenizer.from_pretrained(bert_path)
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
if is_half == True:
bert_model = bert_model.half().to(device)
else:
bert_model = bert_model.to(device)
def get_bert_feature(text, word2ph):
with torch.no_grad():
inputs = tokenizer(text, return_tensors="pt")
for i in inputs:
inputs[i] = inputs[i].to(device)
res = bert_model(**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
assert len(word2ph) == len(text)
phone_level_feature = []
for i in range(len(word2ph)):
repeat_feature = res[i].repeat(word2ph[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
return phone_level_feature.T
class DictToAttrRecursive(dict):
def __init__(self, input_dict):
super().__init__(input_dict)
for key, value in input_dict.items():
if isinstance(value, dict):
value = DictToAttrRecursive(value)
self[key] = value
setattr(self, key, value)
def __getattr__(self, item):
try:
return self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
def __setattr__(self, key, value):
if isinstance(value, dict):
value = DictToAttrRecursive(value)
super(DictToAttrRecursive, self).__setitem__(key, value)
super().__setattr__(key, value)
def __delattr__(self, item):
try:
del self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
ssl_model = cnhubert.get_model()
if is_half == True:
ssl_model = ssl_model.half().to(device)
else:
ssl_model = ssl_model.to(device)
def change_sovits_weights(sovits_path):
global vq_model,hps
dict_s2=torch.load(sovits_path,map_location="cpu")
hps=dict_s2["config"]
hps = DictToAttrRecursive(hps)
hps.model.semantic_frame_rate = "25hz"
vq_model = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model
)
if("pretrained"not in sovits_path):
del vq_model.enc_q
if is_half == True:
vq_model = vq_model.half().to(device)
else:
vq_model = vq_model.to(device)
vq_model.eval()
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
change_sovits_weights(sovits_path)
def change_gpt_weights(gpt_path):
global hz,max_sec,t2s_model,config
hz = 50
dict_s1 = torch.load(gpt_path, map_location="cpu")
config = dict_s1["config"]
max_sec = config["data"]["max_sec"]
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
t2s_model.load_state_dict(dict_s1["weight"])
if is_half == True:
t2s_model = t2s_model.half()
t2s_model = t2s_model.to(device)
t2s_model.eval()
total = sum([param.nelement() for param in t2s_model.parameters()])
print("Number of parameter: %.2fM" % (total / 1e6))
change_gpt_weights(gpt_path)
def get_spepc(hps, filename):
audio = load_audio(filename, int(hps.data.sampling_rate))
audio = torch.FloatTensor(audio)
audio_norm = audio
audio_norm = audio_norm.unsqueeze(0)
spec = spectrogram_torch(
audio_norm,
hps.data.filter_length,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
center=False,
)
return spec
dict_language={
("中文"):"zh",
("英文"):"en",
("日文"):"ja"
}
def splite_en_inf(sentence, language):
pattern = re.compile(r'[a-zA-Z. ]+')
textlist = []
langlist = []
pos = 0
for match in pattern.finditer(sentence):
start, end = match.span()
if start > pos:
textlist.append(sentence[pos:start])
langlist.append(language)
textlist.append(sentence[start:end])
langlist.append("en")
pos = end
if pos < len(sentence):
textlist.append(sentence[pos:])
langlist.append(language)
return textlist, langlist
def clean_text_inf(text, language):
phones, word2ph, norm_text = clean_text(text, language)
phones = cleaned_text_to_sequence(phones)
return phones, word2ph, norm_text
def get_bert_inf(phones, word2ph, norm_text, language):
if language == "zh":
bert = get_bert_feature(norm_text, word2ph).to(device)
else:
bert = torch.zeros(
(1024, len(phones)),
dtype=torch.float16 if is_half == True else torch.float32,
).to(device)
return bert
def nonen_clean_text_inf(text, language):
textlist, langlist = splite_en_inf(text, language)
phones_list = []
word2ph_list = []
norm_text_list = []
for i in range(len(textlist)):
lang = langlist[i]
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
phones_list.append(phones)
if lang == "en" or "ja":
pass
else:
word2ph_list.append(word2ph)
norm_text_list.append(norm_text)
print(word2ph_list)
phones = sum(phones_list, [])
word2ph = sum(word2ph_list, [])
norm_text = ' '.join(norm_text_list)
return phones, word2ph, norm_text
def nonen_get_bert_inf(text, language):
textlist, langlist = splite_en_inf(text, language)
print(textlist)
print(langlist)
bert_list = []
for i in range(len(textlist)):
text = textlist[i]
lang = langlist[i]
phones, word2ph, norm_text = clean_text_inf(text, lang)
bert = get_bert_inf(phones, word2ph, norm_text, lang)
bert_list.append(bert)
bert = torch.cat(bert_list, dim=1)
return bert
def get_tts_wav(selected_text, prompt_text, prompt_language, text, text_language,how_to_cut=("不切")):
ref_wav_path = text_to_audio_mappings.get(selected_text, "")
if not ref_wav_path:
print("Audio file not found for the selected text.")
return
t0 = ttime()
prompt_text = prompt_text.strip("\n")
prompt_language, text = prompt_language, text.strip("\n")
zero_wav = np.zeros(
int(hps.data.sampling_rate * 0.3),
dtype=np.float16 if is_half == True else np.float32,
)
with torch.no_grad():
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
wav16k = torch.from_numpy(wav16k)
zero_wav_torch = torch.from_numpy(zero_wav)
if is_half == True:
wav16k = wav16k.half().to(device)
zero_wav_torch = zero_wav_torch.half().to(device)
else:
wav16k = wav16k.to(device)
zero_wav_torch = zero_wav_torch.to(device)
wav16k=torch.cat([wav16k,zero_wav_torch])
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
"last_hidden_state"
].transpose(
1, 2
) # .float()
codes = vq_model.extract_latent(ssl_content)
prompt_semantic = codes[0, 0]
t1 = ttime()
prompt_language = dict_language[prompt_language]
text_language = dict_language[text_language]
if prompt_language == "en":
phones1, word2ph1, norm_text1 = clean_text_inf(prompt_text, prompt_language)
else:
phones1, word2ph1, norm_text1 = nonen_clean_text_inf(prompt_text, prompt_language)
if(how_to_cut==("凑五句一切")):text=cut1(text)
elif(how_to_cut==("凑50字一切")):text=cut2(text)
elif(how_to_cut==("按中文句号。切")):text=cut3(text)
elif(how_to_cut==("按英文句号.切")):text=cut4(text)
text = text.replace("\n\n","\n").replace("\n\n","\n").replace("\n\n","\n")
if(text[-1]not in splits):text+="。"if text_language!="en"else "."
texts=text.split("\n")
audio_opt = []
if prompt_language == "en":
bert1 = get_bert_inf(phones1, word2ph1, norm_text1, prompt_language)
else:
bert1 = nonen_get_bert_inf(prompt_text, prompt_language)
for text in texts:
# 解决输入目标文本的空行导致报错的问题
if (len(text.strip()) == 0):
continue
if text_language == "en":
phones2, word2ph2, norm_text2 = clean_text_inf(text, text_language)
else:
phones2, word2ph2, norm_text2 = nonen_clean_text_inf(text, text_language)
if text_language == "en":
bert2 = get_bert_inf(phones2, word2ph2, norm_text2, text_language)
else:
bert2 = nonen_get_bert_inf(text, text_language)
bert = torch.cat([bert1, bert2], 1)
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
prompt = prompt_semantic.unsqueeze(0).to(device)
t2 = ttime()
with torch.no_grad():
# pred_semantic = t2s_model.model.infer(
pred_semantic, idx = t2s_model.model.infer_panel(
all_phoneme_ids,
all_phoneme_len,
prompt,
bert,
# prompt_phone_len=ph_offset,
top_k=config["inference"]["top_k"],
early_stop_num=hz * max_sec,
)
t3 = ttime()
# print(pred_semantic.shape,idx)
pred_semantic = pred_semantic[:, -idx:].unsqueeze(
0
) # .unsqueeze(0)#mq要多unsqueeze一次
refer = get_spepc(hps, ref_wav_path) # .to(device)
if is_half == True:
refer = refer.half().to(device)
else:
refer = refer.to(device)
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
audio = (
vq_model.decode(
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
)
.detach()
.cpu()
.numpy()[0, 0]
) ###试试重建不带上prompt部分
audio_opt.append(audio)
audio_opt.append(zero_wav)
t4 = ttime()
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
np.int16
)
splits = {
",",
"。",
"?",
"!",
",",
".",
"?",
"!",
"~",
":",
":",
"—",
"…",
} # 不考虑省略号
def split(todo_text):
todo_text = todo_text.replace("……", "。").replace("——", ",")
if todo_text[-1] not in splits:
todo_text += "。"
i_split_head = i_split_tail = 0
len_text = len(todo_text)
todo_texts = []
while 1:
if i_split_head >= len_text:
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
if todo_text[i_split_head] in splits:
i_split_head += 1
todo_texts.append(todo_text[i_split_tail:i_split_head])
i_split_tail = i_split_head
else:
i_split_head += 1
return todo_texts
def cut1(inp):
inp = inp.strip("\n")
inps = split(inp)
split_idx = list(range(0, len(inps), 5))
split_idx[-1] = None
if len(split_idx) > 1:
opts = []
for idx in range(len(split_idx) - 1):
opts.append("".join(inps[split_idx[idx] : split_idx[idx + 1]]))
else:
opts = [inp]
return "\n".join(opts)
def cut2(inp):
inp = inp.strip("\n")
inps = split(inp)
if len(inps) < 2:
return [inp]
opts = []
summ = 0
tmp_str = ""
for i in range(len(inps)):
summ += len(inps[i])
tmp_str += inps[i]
if summ > 50:
summ = 0
opts.append(tmp_str)
tmp_str = ""
if tmp_str != "":
opts.append(tmp_str)
if len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
opts[-2] = opts[-2] + opts[-1]
opts = opts[:-1]
return "\n".join(opts)
def cut3(inp):
inp = inp.strip("\n")
return "\n".join(["%s。" % item for item in inp.strip("。").split("。")])
def cut4(inp):
inp = inp.strip("\n")
return "\n".join(["%s." % item for item in inp.strip(".").split(".")])
def scan_audio_files(folder_path):
""" 扫描指定文件夹获取音频文件列表 """
return [f for f in os.listdir(folder_path) if f.endswith('.wav')]
def load_audio_text_mappings(folder_path, list_file_name):
text_to_audio_mappings = {}
audio_to_text_mappings = {}
with open(os.path.join(folder_path, list_file_name), 'r', encoding='utf-8') as file:
for line in file:
parts = line.strip().split('|')
if len(parts) >= 4:
audio_file_name = parts[0]
text = parts[3]
audio_file_path = os.path.join(folder_path, audio_file_name)
text_to_audio_mappings[text] = audio_file_path
audio_to_text_mappings[audio_file_path] = text
return text_to_audio_mappings, audio_to_text_mappings
audio_folder_path = 'audio/maimai'
text_to_audio_mappings, audio_to_text_mappings = load_audio_text_mappings(audio_folder_path, 'maimai.list')
with gr.Blocks(title="GPT-SoVITS WebUI") as app:
gr.Markdown(value="""
# <center>【AI卖卖】在线语音生成(GPT-SoVITS)\n
### <center>模型作者:Xz乔希 https://space.bilibili.com/5859321\n
### <center>【GPT-SoVITS】在线合集:https://www.modelscope.cn/studios/xzjosh/GPT-SoVITS\n
### <center>数据集下载:https://huggingface.co/datasets/XzJosh/audiodataset\n
### <center>声音归属:扇宝 https://space.bilibili.com/698438232\n
### <center>GPT-SoVITS项目:https://github.com/RVC-Boss/GPT-SoVITS\n
### <center>使用本模型请严格遵守法律法规!发布二创作品请标注本项目作者及链接、作品使用GPT-SoVITS AI生成!\n
### <center>⚠️在线端不稳定且生成速度较慢,强烈建议下载模型本地推理!\n
""")
# with gr.Tabs():
with gr.Group():
gr.Markdown(value="*参考音频选择(不建议选较长的)")
with gr.Row():
audio_select = gr.Dropdown(label="选择参考音频(必选)", choices=list(text_to_audio_mappings.keys()))
ref_audio = gr.Audio(label="参考音频试听")
ref_text = gr.Textbox(label="参考音频文本")
# 定义更新参考文本的函数
def update_ref_text_and_audio(selected_text):
audio_path = text_to_audio_mappings.get(selected_text, "")
return selected_text, audio_path
# 绑定下拉菜单的变化到更新函数
audio_select.change(update_ref_text_and_audio, [audio_select], [ref_text, ref_audio])
# 其他 Gradio 组件和功能
prompt_language = gr.Dropdown(
label="参考音频语种", choices=["中文", "英文", "日文"], value="中文"
)
gr.Markdown(value="*请填写需要合成的目标文本,中英混合选中文,日英混合选日文,暂不支持中日混合。")
with gr.Row():
text = gr.Textbox(label="需要合成的文本", value="")
text_language = gr.Dropdown(
label="需要合成的语种", choices=["中文", "英文", "日文"], value="中文"
)
how_to_cut = gr.Radio(
label=("自动切分(长文本建议切分)"),
choices=[("不切"),("凑五句一切"),("凑50字一切"),("按中文句号。切"),("按英文句号.切"),],
value=("不切"),
interactive=True,
)
inference_button = gr.Button("合成语音", variant="primary")
output = gr.Audio(label="输出的语音")
inference_button.click(
get_tts_wav,
[audio_select, ref_text, prompt_language, text, text_language,how_to_cut],
[output],
)
gr.Markdown(value="文本切分工具,需要复制。")
with gr.Row():
text_inp = gr.Textbox(label="需要合成的切分前文本", value="")
button1 = gr.Button("凑五句一切", variant="primary")
button2 = gr.Button("凑50字一切", variant="primary")
button3 = gr.Button("按中文句号。切", variant="primary")
button4 = gr.Button("按英文句号.切", variant="primary")
text_opt = gr.Textbox(label="切分后文本", value="")
button1.click(cut1, [text_inp], [text_opt])
button2.click(cut2, [text_inp], [text_opt])
button3.click(cut3, [text_inp], [text_opt])
button4.click(cut4, [text_inp], [text_opt])
app.queue(max_size=10)
app.launch(inbrowser=True)
|