maimai-GPT-SoVITS / module /data_utils.py
XzJosh's picture
Upload 66 files
f643c3e verified
raw
history blame
13.5 kB
import time, logging
import os
import random, traceback
import numpy as np
import torch
import torch.utils.data
from tqdm import tqdm
from module import commons
from module.mel_processing import spectrogram_torch
from text import cleaned_text_to_sequence
from utils import load_wav_to_torch, load_filepaths_and_text
import torch.nn.functional as F
from functools import lru_cache
import torch
import requests
from scipy.io import wavfile
from io import BytesIO
# from config import exp_dir
from my_utils import load_audio
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
"""
1) loads audio, speaker_id, text pairs
2) normalizes text and converts them to sequences of integers
3) computes spectrograms from audio files.
"""
def __init__(self, hparams, val=False):
exp_dir = hparams.exp_dir
self.path2 = "%s/2-name2text.txt" % exp_dir
self.path4 = "%s/4-cnhubert" % exp_dir
self.path5 = "%s/5-wav32k" % exp_dir
assert os.path.exists(self.path2)
assert os.path.exists(self.path4)
assert os.path.exists(self.path5)
names4 = set([name[:-3] for name in list(os.listdir(self.path4))]) # 去除.pt后缀
names5 = set(os.listdir(self.path5))
self.phoneme_data = {}
with open(self.path2, "r", encoding="utf8") as f:
lines = f.read().strip("\n").split("\n")
for line in lines:
tmp = line.split("\t")
if len(tmp) != 4:
continue
self.phoneme_data[tmp[0]] = [tmp[1]]
self.audiopaths_sid_text = list(set(self.phoneme_data) & names4 & names5)
tmp = self.audiopaths_sid_text
leng = len(tmp)
min_num = 100
if leng < min_num:
self.audiopaths_sid_text = []
for _ in range(max(2, int(min_num / leng))):
self.audiopaths_sid_text += tmp
self.max_wav_value = hparams.max_wav_value
self.sampling_rate = hparams.sampling_rate
self.filter_length = hparams.filter_length
self.hop_length = hparams.hop_length
self.win_length = hparams.win_length
self.sampling_rate = hparams.sampling_rate
self.val = val
random.seed(1234)
random.shuffle(self.audiopaths_sid_text)
print("phoneme_data_len:", len(self.phoneme_data.keys()))
print("wav_data_len:", len(self.audiopaths_sid_text))
audiopaths_sid_text_new = []
lengths = []
skipped_phone = 0
skipped_dur = 0
for audiopath in tqdm(self.audiopaths_sid_text):
try:
phoneme = self.phoneme_data[audiopath][0]
phoneme = phoneme.split(" ")
phoneme_ids = cleaned_text_to_sequence(phoneme)
except Exception:
print(f"{audiopath} not in self.phoneme_data !")
skipped_phone += 1
continue
size = os.path.getsize("%s/%s" % (self.path5, audiopath))
duration = size / self.sampling_rate / 2
if 54 > duration > 0.6 or self.val:
audiopaths_sid_text_new.append([audiopath, phoneme_ids])
lengths.append(size // (2 * self.hop_length))
else:
skipped_dur += 1
continue
print("skipped_phone: ", skipped_phone, ", skipped_dur: ", skipped_dur)
print("total left: ", len(audiopaths_sid_text_new))
assert len(audiopaths_sid_text_new) > 1 # 至少能凑够batch size,这里todo
self.audiopaths_sid_text = audiopaths_sid_text_new
self.lengths = lengths
def get_audio_text_speaker_pair(self, audiopath_sid_text):
audiopath, phoneme_ids = audiopath_sid_text
text = torch.FloatTensor(phoneme_ids)
try:
spec, wav = self.get_audio("%s/%s" % (self.path5, audiopath))
with torch.no_grad():
ssl = torch.load(
"%s/%s.pt" % (self.path4, audiopath), map_location="cpu"
)
if ssl.shape[-1] != spec.shape[-1]:
typee = ssl.dtype
ssl = F.pad(ssl.float(), (0, 1), mode="replicate").to(typee)
ssl.requires_grad = False
except:
traceback.print_exc()
spec = torch.zeros(1025, 100)
wav = torch.zeros(1, 100 * self.hop_length)
ssl = torch.zeros(1, 768, 100)
text = text[-1:]
print("load audio or ssl error!!!!!!", audiopath)
# print(ssl.requires_grad,spec.requires_grad,wav.requires_grad,text.requires_grad)
return (ssl, spec, wav, text)
def get_audio(self, filename):
audio_array = load_audio(
filename, self.sampling_rate
) # load_audio的方法是已经归一化到-1~1之间的,不用再/32768
# print(filename,audio_array.max(),audio_array.min(),audio_array.mean())
audio = torch.FloatTensor(audio_array) # /32768
audio_norm = audio
audio_norm = audio_norm.unsqueeze(0)
spec = spectrogram_torch(
audio_norm,
self.filter_length,
self.sampling_rate,
self.hop_length,
self.win_length,
center=False,
)
spec = torch.squeeze(spec, 0)
return spec, audio_norm
def get_sid(self, sid):
sid = torch.LongTensor([int(sid)])
return sid
def __getitem__(self, index):
# with torch.no_grad():
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
def __len__(self):
return len(self.audiopaths_sid_text)
def random_slice(self, ssl, wav, mel):
assert abs(ssl.shape[-1] - wav.shape[-1] // self.hop_length) < 3, (
"first",
ssl.shape,
wav.shape,
)
len_mel = mel.shape[1]
if self.val:
reference_mel = mel[:, : len_mel // 3]
return reference_mel, ssl, wav, mel
dir = random.randint(0, 1)
sep_point = random.randint(int(len_mel // 3), int(len_mel // 3 * 2))
if dir == 0:
reference_mel = mel[:, :sep_point]
ssl = ssl[:, :, sep_point:]
wav2 = wav[:, sep_point * self.hop_length :]
mel = mel[:, sep_point:]
else:
reference_mel = mel[:, sep_point:]
ssl = ssl[:, :, :sep_point]
wav2 = wav[:, : sep_point * self.hop_length]
mel = mel[:, :sep_point]
assert abs(ssl.shape[-1] - wav2.shape[-1] // self.hop_length) < 3, (
ssl.shape,
wav.shape,
wav2.shape,
mel.shape,
sep_point,
self.hop_length,
sep_point * self.hop_length,
dir,
)
return reference_mel, ssl, wav2, mel
class TextAudioSpeakerCollate:
"""Zero-pads model inputs and targets"""
def __init__(self, return_ids=False):
self.return_ids = return_ids
def __call__(self, batch):
"""Collate's training batch from normalized text, audio and speaker identities
PARAMS
------
batch: [text_normalized, spec_normalized, wav_normalized, sid]
"""
# Right zero-pad all one-hot text sequences to max input length
_, ids_sorted_decreasing = torch.sort(
torch.LongTensor([x[1].size(1) for x in batch]), dim=0, descending=True
)
max_ssl_len = max([x[0].size(2) for x in batch])
max_ssl_len = int(2 * ((max_ssl_len // 2) + 1))
max_spec_len = max([x[1].size(1) for x in batch])
max_spec_len = int(2 * ((max_spec_len // 2) + 1))
max_wav_len = max([x[2].size(1) for x in batch])
max_text_len = max([x[3].size(0) for x in batch])
ssl_lengths = torch.LongTensor(len(batch))
spec_lengths = torch.LongTensor(len(batch))
wav_lengths = torch.LongTensor(len(batch))
text_lengths = torch.LongTensor(len(batch))
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
ssl_padded = torch.FloatTensor(len(batch), batch[0][0].size(1), max_ssl_len)
text_padded = torch.LongTensor(len(batch), max_text_len)
spec_padded.zero_()
wav_padded.zero_()
ssl_padded.zero_()
text_padded.zero_()
for i in range(len(ids_sorted_decreasing)):
row = batch[ids_sorted_decreasing[i]]
ssl = row[0]
ssl_padded[i, :, : ssl.size(2)] = ssl[0, :, :]
ssl_lengths[i] = ssl.size(2)
spec = row[1]
spec_padded[i, :, : spec.size(1)] = spec
spec_lengths[i] = spec.size(1)
wav = row[2]
wav_padded[i, :, : wav.size(1)] = wav
wav_lengths[i] = wav.size(1)
text = row[3]
text_padded[i, : text.size(0)] = text
text_lengths[i] = text.size(0)
return (
ssl_padded,
ssl_lengths,
spec_padded,
spec_lengths,
wav_padded,
wav_lengths,
text_padded,
text_lengths,
)
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
"""
Maintain similar input lengths in a batch.
Length groups are specified by boundaries.
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
It removes samples which are not included in the boundaries.
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
"""
def __init__(
self,
dataset,
batch_size,
boundaries,
num_replicas=None,
rank=None,
shuffle=True,
):
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
self.lengths = dataset.lengths
# print(233333333333333,self.lengths,dir(dataset))
self.batch_size = batch_size
self.boundaries = boundaries
self.buckets, self.num_samples_per_bucket = self._create_buckets()
self.total_size = sum(self.num_samples_per_bucket)
self.num_samples = self.total_size // self.num_replicas
def _create_buckets(self):
buckets = [[] for _ in range(len(self.boundaries) - 1)]
for i in range(len(self.lengths)):
length = self.lengths[i]
idx_bucket = self._bisect(length)
if idx_bucket != -1:
buckets[idx_bucket].append(i)
for i in range(len(buckets) - 1, 0, -1):
# for i in range(len(buckets) - 1, -1, -1):
if len(buckets[i]) == 0:
buckets.pop(i)
self.boundaries.pop(i + 1)
num_samples_per_bucket = []
for i in range(len(buckets)):
len_bucket = len(buckets[i])
total_batch_size = self.num_replicas * self.batch_size
rem = (
total_batch_size - (len_bucket % total_batch_size)
) % total_batch_size
num_samples_per_bucket.append(len_bucket + rem)
return buckets, num_samples_per_bucket
def __iter__(self):
# deterministically shuffle based on epoch
g = torch.Generator()
g.manual_seed(self.epoch)
indices = []
if self.shuffle:
for bucket in self.buckets:
indices.append(torch.randperm(len(bucket), generator=g).tolist())
else:
for bucket in self.buckets:
indices.append(list(range(len(bucket))))
batches = []
for i in range(len(self.buckets)):
bucket = self.buckets[i]
len_bucket = len(bucket)
ids_bucket = indices[i]
num_samples_bucket = self.num_samples_per_bucket[i]
# add extra samples to make it evenly divisible
rem = num_samples_bucket - len_bucket
ids_bucket = (
ids_bucket
+ ids_bucket * (rem // len_bucket)
+ ids_bucket[: (rem % len_bucket)]
)
# subsample
ids_bucket = ids_bucket[self.rank :: self.num_replicas]
# batching
for j in range(len(ids_bucket) // self.batch_size):
batch = [
bucket[idx]
for idx in ids_bucket[
j * self.batch_size : (j + 1) * self.batch_size
]
]
batches.append(batch)
if self.shuffle:
batch_ids = torch.randperm(len(batches), generator=g).tolist()
batches = [batches[i] for i in batch_ids]
self.batches = batches
assert len(self.batches) * self.batch_size == self.num_samples
return iter(self.batches)
def _bisect(self, x, lo=0, hi=None):
if hi is None:
hi = len(self.boundaries) - 1
if hi > lo:
mid = (hi + lo) // 2
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
return mid
elif x <= self.boundaries[mid]:
return self._bisect(x, lo, mid)
else:
return self._bisect(x, mid + 1, hi)
else:
return -1
def __len__(self):
return self.num_samples // self.batch_size