File size: 3,402 Bytes
123489f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# Modified from https://github.com/Jongchan/attention-module/blob/master/MODELS/cbam.py

import torch
import torch.nn as nn
import torch.nn.functional as F


class BasicConv(nn.Module):
    def __init__(
        self,
        in_planes,
        out_planes,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=1,
        bias=True,
    ):
        super(BasicConv, self).__init__()
        self.out_channels = out_planes
        self.conv = nn.Conv2d(
            in_planes,
            out_planes,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            bias=bias,
        )

    def forward(self, x):
        x = self.conv(x)
        return x


class Flatten(nn.Module):
    def forward(self, x):
        return x.view(x.size(0), -1)


class ChannelGate(nn.Module):
    def __init__(self, gate_channels, reduction_ratio=16, pool_types=["avg", "max"]):
        super(ChannelGate, self).__init__()
        self.gate_channels = gate_channels
        self.mlp = nn.Sequential(
            Flatten(),
            nn.Linear(gate_channels, gate_channels // reduction_ratio),
            nn.ReLU(),
            nn.Linear(gate_channels // reduction_ratio, gate_channels),
        )
        self.pool_types = pool_types

    def forward(self, x):
        channel_att_sum = None
        for pool_type in self.pool_types:
            if pool_type == "avg":
                avg_pool = F.avg_pool2d(
                    x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3))
                )
                channel_att_raw = self.mlp(avg_pool)
            elif pool_type == "max":
                max_pool = F.max_pool2d(
                    x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3))
                )
                channel_att_raw = self.mlp(max_pool)

            if channel_att_sum is None:
                channel_att_sum = channel_att_raw
            else:
                channel_att_sum = channel_att_sum + channel_att_raw

        scale = torch.sigmoid(channel_att_sum).unsqueeze(2).unsqueeze(3).expand_as(x)
        return x * scale


class ChannelPool(nn.Module):
    def forward(self, x):
        return torch.cat(
            (torch.max(x, 1)[0].unsqueeze(1), torch.mean(x, 1).unsqueeze(1)), dim=1
        )


class SpatialGate(nn.Module):
    def __init__(self):
        super(SpatialGate, self).__init__()
        kernel_size = 7
        self.compress = ChannelPool()
        self.spatial = BasicConv(
            2, 1, kernel_size, stride=1, padding=(kernel_size - 1) // 2
        )

    def forward(self, x):
        x_compress = self.compress(x)
        x_out = self.spatial(x_compress)
        scale = torch.sigmoid(x_out)  # broadcasting
        return x * scale


class CBAM(nn.Module):
    def __init__(
        self,
        gate_channels,
        reduction_ratio=16,
        pool_types=["avg", "max"],
        no_spatial=False,
    ):
        super(CBAM, self).__init__()
        self.ChannelGate = ChannelGate(gate_channels, reduction_ratio, pool_types)
        self.no_spatial = no_spatial
        if not no_spatial:
            self.SpatialGate = SpatialGate()

    def forward(self, x):
        x_out = self.ChannelGate(x)
        if not self.no_spatial:
            x_out = self.SpatialGate(x_out)
        return x_out