File size: 3,591 Bytes
27f6ef7
cbe8e48
e384a9f
284c0f7
 
 
 
bbaa18e
284c0f7
e384a9f
 
8a9401d
e384a9f
284c0f7
 
bbaa18e
 
 
 
284c0f7
bbaa18e
4721a1c
 
 
 
 
cbe8e48
284c0f7
 
 
 
9143358
 
 
 
 
 
284c0f7
 
 
9143358
4721a1c
 
284c0f7
8c39757
4721a1c
 
cbe8e48
 
284c0f7
 
 
 
f4c3c98
 
bfe1386
 
 
f4c3c98
bfe1386
284c0f7
f4c3c98
9f05250
284c0f7
 
 
34139ad
284c0f7
 
 
 
 
f4c3c98
e384a9f
 
 
 
 
 
 
 
 
 
 
284c0f7
 
233b98c
d469f0d
284c0f7
d469f0d
 
284c0f7
 
d469f0d
 
 
284c0f7
d469f0d
284c0f7
e384a9f
 
8a9401d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import os
import torch
from flask import Flask, jsonify, request
from flask_cors import CORS
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, GenerationConfig
import re

# Set the HF_HOME environment variable to a writable directory
os.environ["HF_HOME"] = "/workspace/huggingface_cache"

app = Flask(__name__)

# Enable CORS for specific origins
CORS(app, resources={r"/send_message": {"origins": ["http://localhost:3000", "https://main.dbn2ikif9ou3g.amplifyapp.com"]}})

# Global variables for model and tokenizer
model = None
tokenizer = None

def get_model_and_tokenizer(model_id: str):
    global model, tokenizer
    if model is None or tokenizer is None:
        try:
            print(f"Loading tokenizer for model_id: {model_id}")
            tokenizer = AutoTokenizer.from_pretrained(model_id)
            tokenizer.pad_token = tokenizer.eos_token

            print(f"Loading model for model_id: {model_id}")
            
            bnb_config = BitsAndBytesConfig(
                load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True
            )
            
            model = AutoModelForCausalLM.from_pretrained(
                model_id, quantization_config=bnb_config, device_map="auto"
            )
            
            model.config.use_cache = False
            model.config.pretraining_tp = 1
            model.config.pad_token_id = tokenizer.eos_token_id  # Fix padding issue

        except Exception as e:
            print(f"Error loading model: {e}")
            raise e

def generate_response(user_input, model_id):
    # Ensure model and tokenizer are loaded
    get_model_and_tokenizer(model_id)

    prompt = user_input
    device = "cuda" if torch.cuda.is_available() else "cpu"
    
    generation_config = GenerationConfig(
        penalty_alpha=0.6,
        do_sample=True,
        top_p=0.2,
        top_k=50,
        temperature=0.3,
        repetition_penalty=1.2,
        max_new_tokens=60,
        pad_token_id=tokenizer.eos_token_id
    )

    inputs = tokenizer(prompt, return_tensors="pt").to(device)
    model.to(device)

    outputs = model.generate(**inputs, generation_config=generation_config)
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)

    # Clean up response
    cleaned_response = re.sub(r"(User:|Assistant:)", "", response).strip()
    return cleaned_response.split("\n")[0]  # Keep only the first line of response

@app.route("/", methods=["GET"])
def handle_get_request():
    message = request.args.get("message", "No message provided.")
    return jsonify({"message": message, "status": "GET request successful!"})

@app.route("/send_message", methods=["POST"])
def handle_post_request():
    data = request.get_json()
    if data is None:
        return jsonify({"error": "No JSON data provided"}), 400

    message = data.get("inputs", "No message provided.")
    model_id = data.get("model_id", "YALCINKAYA/FinetunedByYalcin")

    try:
        print(f"Processing request")
        model_response = generate_response(message, model_id)
        return jsonify({
            "received_message": model_response,
            "model_id": model_id,
            "status": "POST request successful!"
        })
    except Exception as e:
        error_message = str(e) if app.debug else "An error occurred while processing your request."
        print(f"Error handling POST request: {e}")
        return jsonify({"error": error_message}), 500

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=7860)