Spaces:
Sleeping
Sleeping
File size: 4,878 Bytes
27f6ef7 e384a9f 233b98c 44e0ccd 8c39757 bbaa18e e384a9f 8a9401d e384a9f 188010c 8a9401d bbaa18e 56599c7 bbaa18e 70f5edf 44e0ccd 8c39757 bbaa18e 44e0ccd 188010c 05f391e 188010c bbaa18e 188010c bbaa18e f4c3c98 ed324ed f4c3c98 8c39757 d3382bd 85de869 c693434 f4c3c98 c693434 f4c3c98 9f05250 f4c3c98 233b98c f4c3c98 e384a9f b4930ce df73242 233b98c d469f0d 498261c d469f0d e384a9f 8a9401d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
import os
from flask import Flask, jsonify, request
from flask_cors import CORS
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import re
# Set the HF_HOME environment variable to a writable directory
os.environ["HF_HOME"] = "/workspace/huggingface_cache" # Change this to a writable path in your space
app = Flask(__name__)
# Enable CORS for specific origins
CORS(app, resources={r"api/predict/*": {"origins": ["http://localhost:3000", "https://main.dbn2ikif9ou3g.amplifyapp.com"]}})
# Global variables for model and tokenizer
model = None
tokenizer = None
def get_model_and_tokenizer(model_id):
global model, tokenizer
try:
print(f"Loading tokenizer for model_id: {model_id}")
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token
print(f"Loading model and for model_id: {model_id}")
# Load the model
model = AutoModelForCausalLM.from_pretrained(model_id) #, device_map="auto")
model.config.use_cache = False
except Exception as e:
print(f"Error loading model: {e}")
return "No complete blocks found. Please check the format of the response."
# max_new_tokens=100,
# min_length=5,
# do_sample=False,
# num_beams=1,
# pad_token_id=tokenizer.eos_token_id,
# truncation=True
#penalty_alpha=0.6,
#do_sample = True,
#top_k=5,
#temperature=0.5,
#repetition_penalty=1.2,
#max_new_tokens=60,
#pad_token_id=tokenizer.eos_token_id,
#truncation=True,
#penalty_alpha=0.6, # Keep this to balance exploration and exploitation
#do_sample=True, # Keep sampling to allow for variability in responses
#top_k=20, # Increase top_k to give more options for sampling
#temperature=0.3, # Lower temperature to make outputs more deterministic and focused
#repetition_penalty=1.5, # Increase repetition penalty to discourage repeated phrases
#max_new_tokens=60, # Keep this as is, depending on your expected output length
#pad_token_id=tokenizer.eos_token_id,
#truncation=True, # Enable truncation for input sequences
#penalty_alpha=0.6, # Maintain this for balance
#do_sample=True, # Allow sampling for variability
#top_k=3, # Reduce top_k to narrow down options
#temperature=0.7, # Keep this low for more deterministic responses
#repetition_penalty=1.2, # Keep this moderate to avoid repetitive responses
#max_new_tokens=60, # Maintain this limit
#pad_token_id=tokenizer.eos_token_id,
#truncation=True, # Enable truncation for longer prompts
#
def generate_response(user_input):
prompt = formatted_prompt(user_input)
inputs = tokenizer([prompt], return_tensors="pt")
generation_config = GenerationConfig(
penalty_alpha=0.6,
do_sample=True,
top_k=5,
temperature=0.6,
repetition_penalty=1.2,
max_new_tokens=30, # Adjust as necessary
pad_token_id=tokenizer.eos_token_id,
stop_sequences=["User:", "Assistant:"],
)
outputs = model.generate(**inputs, generation_config=generation_config)
response = tokenizer.decode(outputs[:, inputs['input_ids'].shape[-1]:][0], skip_special_tokens=True)
return response.strip().split("Assistant:")[-1].strip() # Get the part after 'Assistant:'
def formatted_prompt(question) -> str:
return f"<|startoftext|>User: {question}\nAssistant:"
@app.route("/", methods=["GET"])
def handle_get_request():
message = request.args.get("message", "No message provided.")
return jsonify({"message": message, "status": "GET request successful!"})
@app.route("/send_message", methods=["POST"])
def handle_post_request():
data = request.get_json()
if data is None:
return jsonify({"error": "No JSON data provided"}), 400
message = data.get("inputs", "No message provided.")
model_id = data.get("model_id", "YALCINKAYA/FinetunedByYalcin") # Default model if not provided
try:
# Generate a response from the model
model_response = generate_response(message, model_id)
return jsonify({
"received_message": model_response,
"model_id": model_id,
"status": "POST request successful!"
})
except Exception as e:
print(f"Error handling POST request: {e}")
return jsonify({"error": "An error occurred while processing your request."}), 500
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860)
|