File size: 3,303 Bytes
27f6ef7
e384a9f
233b98c
44e0ccd
bbaa18e
 
 
e384a9f
 
8a9401d
e384a9f
 
8a9401d
bbaa18e
 
 
 
56599c7
bbaa18e
 
70f5edf
44e0ccd
 
bbaa18e
44e0ccd
05f391e
 
 
bbaa18e
05f391e
bbaa18e
 
 
 
 
9f05250
56599c7
bbaa18e
56599c7
8a9401d
05f391e
 
56599c7
9f05250
bbaa18e
9f05250
05f391e
bbaa18e
9f05250
bbaa18e
 
9f05250
 
d469f0d
 
 
 
 
 
 
 
8a9401d
233b98c
 
e384a9f
 
 
 
 
 
 
 
 
 
 
 
b4930ce
84ab20f
233b98c
d469f0d
 
 
 
 
 
 
 
 
 
e384a9f
 
8a9401d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import os
from flask import Flask, jsonify, request
from flask_cors import CORS 
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig  

# Set the HF_HOME environment variable to a writable directory
os.environ["HF_HOME"] = "/workspace/huggingface_cache"  # Change this to a writable path in your space

app = Flask(__name__)

# Enable CORS for specific origins
CORS(app, resources={r"api/predict/*": {"origins": ["http://localhost:3000", "https://main.dbn2ikif9ou3g.amplifyapp.com"]}})

# Global variables for model and tokenizer
model = None
tokenizer = None

def get_model_and_tokenizer(model_id):
    global model, tokenizer
    try:
        print(f"Loading tokenizer for model_id: {model_id}")
        # Load the tokenizer
        tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=False)
        tokenizer.pad_token = tokenizer.eos_token
        
        print(f"Loading model and for model_id: {model_id}")
        # Load the model
        model = AutoModelForCausalLM.from_pretrained(model_id) #, device_map="auto")
        model.config.use_cache = False
   
    except Exception as e:
        print(f"Error loading model: {e}")

def generate_response(user_input, model_id):
    prompt = formatted_prompt(user_input)
    
    # Load the model and tokenizer if they are not already loaded
    if model is None or tokenizer is None:
        get_model_and_tokenizer(model_id)  # Load model and tokenizer

    # Prepare the input tensors
    inputs = tokenizer(prompt, return_tensors="pt")  # Move inputs to GPU if available
    
    generation_config = GenerationConfig(
        max_new_tokens=100,
        min_length=5,
        temperature=0.7, 
        do_sample=False,
        num_beams=1,
        pad_token_id=tokenizer.eos_token_id,
        truncation=True
    )

    try:
        # Generate response
        outputs = model.generate(**inputs, generation_config=generation_config)
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)
        return response
    except Exception as e:
        print(f"Error generating response: {e}")
        return "Error generating response."

def formatted_prompt(question) -> str:
    return f"<|im_start|>user\n{question}<|im_end|>\n<|im_start|>assistant:"

@app.route("/", methods=["GET"])
def handle_get_request():
    message = request.args.get("message", "No message provided.")
    return jsonify({"message": message, "status": "GET request successful!"})

@app.route("/send_message", methods=["POST"])
def handle_post_request():
    data = request.get_json()
    if data is None:
        return jsonify({"error": "No JSON data provided"}), 400

    message = data.get("inputs", "No message provided.") 
    model_id = data.get("model_id", "YALCINKAYA/FinetunedByYalcin5")  # Default model if not provided

    try:
        # Generate a response from the model
        model_response = generate_response(message, model_id)
        return jsonify({
            "received_message": model_response, 
            "status": "POST request successful!"
        })
    except Exception as e:
        print(f"Error handling POST request: {e}")
        return jsonify({"error": "An error occurred while processing your request."}), 500

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=7860)