opsgenius3 / app.py
YALCINKAYA's picture
Update app.py
ac91e2e verified
import os
import torch
import uuid
import shutil
import numpy as np
import faiss
from flask import Flask, jsonify, request
from flask_cors import CORS
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, GenerationConfig
from accelerate import Accelerator
import re
import traceback
from transformers import pipeline
from sentence_transformers import SentenceTransformer, util
# Set the HF_HOME environment variable to a writable directory
os.environ["HF_HOME"] = "/workspace/huggingface_cache"
app = Flask(__name__)
# Enable CORS for specific origins
CORS(app, resources={r"/send_message": {"origins": ["http://localhost:3000", "https://main.dbn2ikif9ou3g.amplifyapp.com"]}})
# Load zero-shot classification pipeline
#classifier = pipeline("zero-shot-classification")
# Load Sentence-BERT model
bertmodel = SentenceTransformer('all-MiniLM-L6-v2') # Lightweight, efficient model; choose larger if needed
# Global variables for model and tokenizer
model = None
tokenizer = None
accelerator = Accelerator()
highest_label = None
loaded_models = {}
# Load model with accelerator
classifier = pipeline(
"zero-shot-classification",
model="facebook/bart-large-mnli",
revision="d7645e1",
device=accelerator.device # Ensures correct device placement
)
# Move model to correct device
classifier.model = accelerator.prepare(classifier.model)
# Define upload directory and FAISS index file
UPLOAD_DIR = "/app/uploads"
faiss_index_file = os.path.join(UPLOAD_DIR, "faiss_index.bin")
# Ensure upload directory exists and has write permissions
try:
os.makedirs(UPLOAD_DIR, exist_ok=True)
if not os.access(UPLOAD_DIR, os.W_OK):
print(f"Fixing permissions for {UPLOAD_DIR}...")
os.chmod(UPLOAD_DIR, 0o777)
print(f"Uploads directory is ready: {UPLOAD_DIR}")
except PermissionError as e:
print(f"PermissionError: {e}. Try adjusting directory ownership or running with elevated permissions.")
document_store = {}
def initialize_faiss():
if os.path.exists(faiss_index_file):
try:
print(f"FAISS index file {faiss_index_file} exists, attempting to load it.")
index = faiss.read_index(faiss_index_file)
if index.ntotal > 0:
print(f"FAISS index loaded with {index.ntotal} vectors.")
# If the index has non-zero entries, reset it
index.reset() # Resetting the index if non-zero entries
print("Index reset. Reinitializing index.")
index = faiss.IndexIDMap(faiss.IndexFlatL2(384)) # Reinitialize the index
else:
print("Loaded index has zero vectors, reinitializing index.")
index = faiss.IndexIDMap(faiss.IndexFlatL2(384)) # Initialize with flat L2 distance
except Exception as e:
print(f"Error loading FAISS index: {e}, reinitializing a new index.")
index = faiss.IndexIDMap(faiss.IndexFlatL2(384))
else:
print(f"FAISS index file {faiss_index_file} does not exist, initializing a new index.")
index = faiss.IndexIDMap(faiss.IndexFlatL2(384))
# Move to GPU if available
# if torch.cuda.is_available():
# print("CUDA is available, moving FAISS index to GPU.")
# index = faiss.index_cpu_to_all_gpus(index)
# print("FAISS index is now on GPU.")
return index
def save_faiss_index(index):
try:
if torch.cuda.is_available():
print("Moving FAISS index back to CPU before saving.")
res = faiss.StandardGpuResources() # Allocate GPU resources
index = faiss.index_cpu_to_gpu(res, 0, index) # Move to GPU 0
print(f"Saving FAISS index to {faiss_index_file}.")
faiss.write_index(index, faiss_index_file)
print(f"FAISS index successfully saved to {faiss_index_file}.")
except Exception as e:
print(f"Error saving FAISS index: {e}")
# Initialize FAISS index
index = initialize_faiss()
# Save FAISS index after modifications
save_faiss_index(index)
# Load document store and populate FAISS index
knowledgebase_file = os.path.join(UPLOAD_DIR, "knowledgebase1.txt") # Ensure this path is correct
def load_document_store():
"""Loads knowledgebase.txt into a dictionary where FAISS IDs map to text and embeddings"""
global document_store
document_store = {} # Reset document store
all_texts = []
if os.path.exists(knowledgebase_file):
with open(knowledgebase_file, "r", encoding="utf-8") as f:
lines = f.readlines()
for i, line in enumerate(lines):
text = line.strip()
if text:
document_store[i] = {"text": text} # Store text mapped to FAISS ID
all_texts.append(text) # Collect all texts for embedding
print(f"Loaded {len(document_store)} documents into document_store.")
else:
print("Error: knowledgebase.txt not found!")
# Generate embeddings for all documents
embeddings = bertmodel.encode(all_texts)
embeddings = embeddings.astype("float32")
# Add embeddings to FAISS index
index.add_with_ids(embeddings, np.array(list(document_store.keys()), dtype=np.int64))
print(f"Added {len(all_texts)} document embeddings to FAISS index.")
def load_document_store_once(file_path):
"""Loads knowledgebase.txt into a dictionary where FAISS IDs map to text and embeddings"""
global document_store
document_store = {} # Reset document store
all_texts = []
file_location = os.path.join(UPLOAD_DIR, os.path.basename(file_path))
if os.path.exists(file_location):
with open(file_location, "r", encoding="utf-8") as f:
lines = f.readlines()
for i, line in enumerate(lines):
text = line.strip()
if text:
document_store[i] = {"text": text} # Store text mapped to FAISS ID
all_texts.append(text) # Collect all texts for embedding
print(f"Loaded {len(document_store)} documents into document_store.")
else:
print("Error: knowledgebase.txt not found!")
# Generate embeddings for all documents
embeddings = bertmodel.encode(all_texts)
embeddings = embeddings.astype("float32")
# Add embeddings to FAISS index
index.add_with_ids(embeddings, np.array(list(document_store.keys()), dtype=np.int64))
print(f"Added {len(all_texts)} document embeddings to FAISS index.")
# Function to upload document
def upload_document(file_path, embed_model):
try:
# Generate unique document ID
doc_id = uuid.uuid4().int % (2**63 - 1)
# Ensure the file is saved to the correct directory with secure handling
file_location = os.path.join(UPLOAD_DIR, os.path.basename(file_path))
print(f"Saving file to: {file_location}") # Log the location
# Safely copy the file to the upload directory
shutil.copy(file_path, file_location)
# Read the content of the uploaded file
try:
with open(file_location, "r", encoding="utf-8") as f:
text = f.read()
except Exception as e:
print(f"Error reading file {file_location}: {e}")
return {"error": f"Error reading file: {e}"}, 507 # Error while reading file
# Embed the text and add it to the FAISS index
try:
# Ensure the embedding model is valid
if embed_model is None:
raise ValueError("Embedding model is not initialized properly.")
vector = embed_model.encode(text).astype("float32")
print(f"Generated vector for document {doc_id}: {vector}") # Log vector
index.add_with_ids(np.array([vector]), np.array([doc_id], dtype=np.int64))
document_store[doc_id] = {"path": file_location, "text": text}
# Log FAISS index file path
print(f"Saving FAISS index to: {faiss_index_file}") # Log the file path
# Save the FAISS index after adding the document
try:
faiss.write_index(index, faiss_index_file)
print(f"Document uploaded with doc_id: {doc_id}")
except Exception as e:
print(f"Error saving FAISS index: {e}")
return {"error": f"Error saving FAISS index: {e}"}, 508 # Error while saving FAISS index
except Exception as e:
print(f"Error during document upload: {e}")
return {"error": f"Error during document upload: {e}"}, 509 # Error during embedding or FAISS processing
except Exception as e:
print(f"Unexpected error: {e}")
return {"error": f"Unexpected error: {e}"}, 500 # General error
@app.route("/list_uploads", methods=["GET"])
def list_uploaded_files():
try:
# Ensure the upload directory exists
if not os.path.exists(UPLOAD_DIR):
return jsonify({"error": "Upload directory does not exist"}), 400
# List all files in the upload directory
files = os.listdir(UPLOAD_DIR)
if not files:
return jsonify({"message": "No files found in the upload directory"}), 200
return jsonify({"files": files}), 200
except Exception as e:
return jsonify({"error": f"Error listing files: {e}"}), 504
@app.route("/upload", methods=["POST"])
def handle_upload():
# Check if the request contains the file
if "file" not in request.files:
return jsonify({"error": "No file provided"}), 400
file = request.files["file"]
# Ensure the filename is safe and construct the full file path
file_path = os.path.join(UPLOAD_DIR, file.filename)
# Ensure the upload directory exists and has correct permissions
try:
os.makedirs(UPLOAD_DIR, exist_ok=True) # Ensure the directory exists
if not os.access(UPLOAD_DIR, os.W_OK): # Check write permissions
os.chmod(UPLOAD_DIR, 0o777)
except PermissionError as e:
return jsonify({"error": f"Permission error with upload directory: {e}"}), 501
try:
# Save the file to the upload directory
file.save(file_path)
load_document_store() # Reload FAISS index
# Now that the document is uploaded, call load_document_store()
print(f"File uploaded successfully. Calling load_document_store()...")
except Exception as e:
return jsonify({"error": f"Error saving file: {e}"}), 502
# Process the document using the upload_document function
try:
load_document_store_once(file_path)
# upload_document(file_path, bertmodel) # Assuming 'bertmodel' is defined elsewhere
except Exception as e:
return jsonify({"error": f"Error processing file: {e}"}), 503
# Return success response
return jsonify({"message": "File uploaded and processed successfully"}), 200
def get_model_and_tokenizer(model_id: str):
"""
Load and cache the model and tokenizer for the given model_id.
"""
global model, tokenizer # Declare global variables to modify them within the function
if model_id not in loaded_models:
try:
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
model = accelerator.prepare(model)
loaded_models[model_id] = (model, tokenizer)
except Exception as e:
print("Error loading model:")
print(traceback.format_exc()) # Logs the full error traceback
raise e # Reraise the exception to stop execution
return loaded_models[model_id]
# Extract the core sentence needing grammar correction
def extract_core_sentence(user_input):
"""
Extract the core sentence needing grammar correction from the user input.
"""
match = re.search(r"(?<=sentence[: ]).+", user_input, re.IGNORECASE)
if match:
return match.group(0).strip()
return user_input
def classify_intent(user_input):
"""
Classify the intent of the user input using zero-shot classification.
"""
candidate_labels = [
"grammar correction", "information request", "task completion",
"dialog continuation", "personal opinion", "product inquiry",
"feedback request", "recommendation request", "clarification request",
"affirmation or agreement", "real-time data request", "current information"
]
result = classifier(user_input, candidate_labels)
highest_score_index = result['scores'].index(max(result['scores']))
highest_label = result['labels'][highest_score_index]
return highest_label
# Reformulate the prompt based on intent
# Function to generate reformulated prompts
def reformulate_prompt(user_input, intent_label):
"""
Reformulate the prompt based on the classified intent.
"""
core_sentence = extract_core_sentence(user_input)
prompt_templates = {
"grammar correction": f"Fix the grammar in this sentence: {core_sentence}",
"information request": f"Provide information about: {core_sentence}",
"dialog continuation": f"Continue the conversation based on the previous dialog:\n{core_sentence}\n",
"personal opinion": f"What is your personal opinion on: {core_sentence}?",
"product inquiry": f"Provide details about the product: {core_sentence}",
"feedback request": f"Please provide feedback on: {core_sentence}",
"recommendation request": f"Recommend something related to: {core_sentence}",
"clarification request": f"Clarify the following: {core_sentence}",
"affirmation or agreement": f"Affirm or agree with the statement: {core_sentence}",
}
return prompt_templates.get(intent_label, "Input does not require a defined action.")
chat_history = [
("Hi there, how are you?", "I am fine. How are you?"),
("Tell me a joke!", "The capital of France is Paris."),
("Can you tell me another joke?", "Why don't scientists trust atoms? Because they make up everything!"),
]
def generate_response(user_input, model_id):
try:
model, tokenizer = get_model_and_tokenizer(model_id)
device = accelerator.device # Get the device from the accelerator
# Append chat history
func_caller = []
query_vector = bertmodel.encode(user_input).reshape(1, -1).astype("float32")
D, I = index.search(query_vector, 1)
# Retrieve document
retrieved_id = I[0][0]
retrieved_knowledge = (
document_store.get(retrieved_id, {}).get("text", "No relevant information found.")
if retrieved_id != -1 else "No relevant information found."
)
# Construct the knowledge prompt
prompt = f"Use the following knowledge:\n{retrieved_knowledge}"
# Log the prompt (you can change this to a logging library if needed)
print(f"Generated prompt: {prompt}") # <-- Log the prompt here
# Add the retrieved knowledge to the prompt
func_caller.append({"role": "system", "content": prompt})
for msg in chat_history:
func_caller.append({"role": "user", "content": f"{str(msg[0])}"})
func_caller.append({"role": "assistant", "content": f"{str(msg[1])}"})
highest_label_result = classify_intent(user_input)
# Reformulated prompt based on intent classification
reformulated_prompt = reformulate_prompt(user_input, highest_label_result)
func_caller.append({"role": "user", "content": f'{reformulated_prompt}'})
formatted_prompt = "\n".join([f"{m['role']}: {m['content']}" for m in func_caller])
#prompt = user_input
#device = accelerator.device # Automatically uses GPU or CPU based on accelerator setup
generation_config = GenerationConfig(
do_sample=(highest_label == "dialog continuation" or highest_label == "recommendation request"), # True if dialog continuation, else False
temperature=0.7 if highest_label == "dialog continuation" else (0.2 if highest_label == "recommendation request" else None), # Set temperature for specific intents
top_k = 5 if highest_label == "recommendation request" else None,
#attention_mask=attention_mask,
max_length=150,
repetition_penalty=1.2,
length_penalty=1.0,
no_repeat_ngram_size=2,
num_return_sequences=1,
pad_token_id=tokenizer.eos_token_id,
#stop_sequences=["User:", "Assistant:", "\n"],
)
# Generate response
gpt_inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device)
gpt_output = model.generate(gpt_inputs["input_ids"], max_new_tokens=50, generation_config=generation_config)
final_response = tokenizer.decode(gpt_output[0], skip_special_tokens=True)
# Extract AI's response only (omit the prompt)
#ai_response2 = final_response.replace(reformulated_prompt, "").strip()
ai_response = re.sub(re.escape(formatted_prompt), "", final_response, flags=re.IGNORECASE).strip()
#ai_response = re.split(r'(?<=\w[.!?]) +', ai_response)
ai_response = [s.strip() for s in re.split(r'(?<=\w[.!?]) +', ai_response) if s]
# Encode the prompt and candidates
prompt_embedding = bertmodel.encode(formatted_prompt, convert_to_tensor=True)
candidate_embeddings = bertmodel.encode(ai_response, convert_to_tensor=True)
# Compute similarity scores between prompt and each candidate
similarities = util.pytorch_cos_sim(prompt_embedding, candidate_embeddings)[0]
# Find the candidate with the highest similarity score
best_index = similarities.argmax()
best_response = ai_response[best_index]
# Assuming best_response is already defined and contains the generated response
if highest_label == "dialog continuation":
# Split the response into sentences
sentences = best_response.split('. ')
# Take the first three sentences and join them back together
best_response = '. '.join(sentences[:3]) if len(sentences) > 3 else best_response
# Append the user's message to the chat history
chat_history.append({'role': 'user', 'content': user_input})
chat_history.append({'role': 'assistant', 'content': best_response})
return best_response
except Exception as e:
print("Error in generate_response:")
print(traceback.format_exc()) # Logs the full traceback
raise e
@app.route("/send_message", methods=["POST"])
def handle_post_request():
try:
data = request.get_json()
if data is None:
return jsonify({"error": "No JSON data provided"}), 400
message = data.get("inputs", "No message provided.")
model_id = data.get("model_id", "meta-llama/Llama-3.1-8B-Instruct")
#model_id = data.get("model_id", "openai-community/gpt2-large")
print(f"Processing request with model_id: {model_id}")
model_response = generate_response(message, model_id)
return jsonify({
"received_message": model_response,
"model_id": model_id,
"status": "POST request successful!"
})
except Exception as e:
print("Error handling POST request:")
print(traceback.format_exc()) # Logs the full traceback
return jsonify({"error": str(e)}), 500
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860)