Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,9 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
|
6 |
from accelerate import Accelerator
|
7 |
import re
|
8 |
import traceback
|
9 |
-
|
|
|
|
|
10 |
# Set the HF_HOME environment variable to a writable directory
|
11 |
os.environ["HF_HOME"] = "/workspace/huggingface_cache"
|
12 |
|
@@ -14,79 +16,167 @@ app = Flask(__name__)
|
|
14 |
|
15 |
# Enable CORS for specific origins
|
16 |
CORS(app, resources={r"/send_message": {"origins": ["http://localhost:3000", "https://main.dbn2ikif9ou3g.amplifyapp.com"]}})
|
|
|
|
|
|
|
17 |
|
|
|
|
|
|
|
18 |
# Global variables for model and tokenizer
|
19 |
model = None
|
20 |
tokenizer = None
|
21 |
-
accelerator = Accelerator()
|
22 |
-
|
|
|
|
|
23 |
def get_model_and_tokenizer(model_id: str):
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
26 |
try:
|
27 |
-
print(f"Loading tokenizer for model_id: {model_id}")
|
28 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
29 |
-
|
30 |
-
|
31 |
-
print(f"Loading model for model_id: {model_id}")
|
32 |
-
|
33 |
-
bnb_config = BitsAndBytesConfig(
|
34 |
-
load_in_4bit=True, bnb_4bit_quant_type="nf4",
|
35 |
-
bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True
|
36 |
-
)
|
37 |
-
|
38 |
-
model = AutoModelForCausalLM.from_pretrained(
|
39 |
-
model_id, quantization_config=bnb_config, device_map="auto"
|
40 |
-
)
|
41 |
-
|
42 |
-
model.config.use_cache = False
|
43 |
-
model.config.pretraining_tp = 1
|
44 |
-
model.config.pad_token_id = tokenizer.eos_token_id # Fix padding issue
|
45 |
-
|
46 |
-
# Use accelerator.prepare() to handle device assignment (no need to move model manually)
|
47 |
model = accelerator.prepare(model)
|
48 |
-
|
49 |
except Exception as e:
|
50 |
print("Error loading model:")
|
51 |
print(traceback.format_exc()) # Logs the full error traceback
|
52 |
raise e # Reraise the exception to stop execution
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
def generate_response(user_input, model_id):
|
55 |
try:
|
56 |
-
get_model_and_tokenizer(model_id)
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
|
|
|
|
|
|
61 |
generation_config = GenerationConfig(
|
62 |
-
do_sample=
|
63 |
-
|
64 |
-
top_k=
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
#
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
except Exception as e:
|
83 |
print("Error in generate_response:")
|
84 |
print(traceback.format_exc()) # Logs the full traceback
|
85 |
raise e
|
86 |
-
|
87 |
-
def formatted_prompt(question)-> str:
|
88 |
-
return f"<|im_start|>user\n{question}<|im_end|>\n<|im_start|>assistant:"
|
89 |
-
|
90 |
@app.route("/send_message", methods=["POST"])
|
91 |
def handle_post_request():
|
92 |
try:
|
@@ -95,7 +185,7 @@ def handle_post_request():
|
|
95 |
return jsonify({"error": "No JSON data provided"}), 400
|
96 |
|
97 |
message = data.get("inputs", "No message provided.")
|
98 |
-
model_id = data.get("model_id", "
|
99 |
|
100 |
print(f"Processing request with model_id: {model_id}")
|
101 |
model_response = generate_response(message, model_id)
|
@@ -105,6 +195,7 @@ def handle_post_request():
|
|
105 |
"model_id": model_id,
|
106 |
"status": "POST request successful!"
|
107 |
})
|
|
|
108 |
except Exception as e:
|
109 |
print("Error handling POST request:")
|
110 |
print(traceback.format_exc()) # Logs the full traceback
|
|
|
6 |
from accelerate import Accelerator
|
7 |
import re
|
8 |
import traceback
|
9 |
+
from transformers import pipeline
|
10 |
+
from sentence_transformers import SentenceTransformer, util
|
11 |
+
|
12 |
# Set the HF_HOME environment variable to a writable directory
|
13 |
os.environ["HF_HOME"] = "/workspace/huggingface_cache"
|
14 |
|
|
|
16 |
|
17 |
# Enable CORS for specific origins
|
18 |
CORS(app, resources={r"/send_message": {"origins": ["http://localhost:3000", "https://main.dbn2ikif9ou3g.amplifyapp.com"]}})
|
19 |
+
|
20 |
+
# Load zero-shot classification pipeline
|
21 |
+
classifier = pipeline("zero-shot-classification")
|
22 |
|
23 |
+
# Load Sentence-BERT model
|
24 |
+
bertmodel = SentenceTransformer('all-MiniLM-L6-v2') # Lightweight, efficient model; choose larger if needed
|
25 |
+
|
26 |
# Global variables for model and tokenizer
|
27 |
model = None
|
28 |
tokenizer = None
|
29 |
+
accelerator = Accelerator()
|
30 |
+
highest_label = None
|
31 |
+
loaded_models = {}
|
32 |
+
|
33 |
def get_model_and_tokenizer(model_id: str):
|
34 |
+
"""
|
35 |
+
Load and cache the model and tokenizer for the given model_id.
|
36 |
+
"""
|
37 |
+
global model, tokenizer # Declare global variables to modify them within the function
|
38 |
+
if model_id not in loaded_models:
|
39 |
try:
|
|
|
40 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
41 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
model = accelerator.prepare(model)
|
43 |
+
loaded_models[model_id] = (model, tokenizer)
|
44 |
except Exception as e:
|
45 |
print("Error loading model:")
|
46 |
print(traceback.format_exc()) # Logs the full error traceback
|
47 |
raise e # Reraise the exception to stop execution
|
48 |
+
return loaded_models[model_id]
|
49 |
+
|
50 |
+
|
51 |
+
# Extract the core sentence needing grammar correction
|
52 |
+
def extract_core_sentence(user_input):
|
53 |
+
"""
|
54 |
+
Extract the core sentence needing grammar correction from the user input.
|
55 |
+
"""
|
56 |
+
match = re.search(r"(?<=sentence[: ]).+", user_input, re.IGNORECASE)
|
57 |
+
if match:
|
58 |
+
return match.group(0).strip()
|
59 |
+
return user_input
|
60 |
+
|
61 |
+
def classify_intent(user_input):
|
62 |
+
"""
|
63 |
+
Classify the intent of the user input using zero-shot classification.
|
64 |
+
"""
|
65 |
+
candidate_labels = [
|
66 |
+
"grammar correction", "information request", "task completion",
|
67 |
+
"dialog continuation", "personal opinion", "product inquiry",
|
68 |
+
"feedback request", "recommendation request", "clarification request",
|
69 |
+
"affirmation or agreement", "real-time data request", "current information"
|
70 |
+
]
|
71 |
+
result = classifier(user_input, candidate_labels)
|
72 |
+
highest_score_index = result['scores'].index(max(result['scores']))
|
73 |
+
highest_label = result['labels'][highest_score_index]
|
74 |
+
return highest_label
|
75 |
+
|
76 |
+
|
77 |
+
# Reformulate the prompt based on intent
|
78 |
+
# Function to generate reformulated prompts
|
79 |
+
def reformulate_prompt(user_input, intent_label):
|
80 |
+
"""
|
81 |
+
Reformulate the prompt based on the classified intent.
|
82 |
+
"""
|
83 |
+
core_sentence = extract_core_sentence(user_input)
|
84 |
+
prompt_templates = {
|
85 |
+
"grammar correction": f"Fix the grammar in this sentence: {core_sentence}",
|
86 |
+
"information request": f"Provide information about: {core_sentence}",
|
87 |
+
"dialog continuation": f"Continue the conversation based on the previous dialog:\n{core_sentence}\n",
|
88 |
+
"personal opinion": f"What is your personal opinion on: {core_sentence}?",
|
89 |
+
"product inquiry": f"Provide details about the product: {core_sentence}",
|
90 |
+
"feedback request": f"Please provide feedback on: {core_sentence}",
|
91 |
+
"recommendation request": f"Recommend something related to: {core_sentence}",
|
92 |
+
"clarification request": f"Clarify the following: {core_sentence}",
|
93 |
+
"affirmation or agreement": f"Affirm or agree with the statement: {core_sentence}",
|
94 |
+
}
|
95 |
+
return prompt_templates.get(intent_label, "Input does not require a defined action.")
|
96 |
+
|
97 |
+
chat_history = [
|
98 |
+
("Hi there, how are you?", "I am fine. How are you?"),
|
99 |
+
("Tell me a joke!", "The capital of France is Paris."),
|
100 |
+
("Can you tell me another joke?", "Why don't scientists trust atoms? Because they make up everything!"),
|
101 |
+
]
|
102 |
+
|
103 |
+
|
104 |
def generate_response(user_input, model_id):
|
105 |
try:
|
106 |
+
model, tokenizer = get_model_and_tokenizer(model_id)
|
107 |
+
device = accelerator.device # Get the device from the accelerator
|
108 |
+
|
109 |
+
# Append chat history
|
110 |
+
func_caller = []
|
111 |
+
|
112 |
+
for msg in chat_history:
|
113 |
+
func_caller.append({"role": "user", "content": f"{str(msg[0])}"})
|
114 |
+
func_caller.append({"role": "assistant", "content": f"{str(msg[1])}"})
|
115 |
+
|
116 |
+
# Reformulated prompt based on intent classification
|
117 |
+
reformulated_prompt = reformulate_prompt(user_input, highest_label)
|
118 |
+
|
119 |
+
func_caller.append({"role": "user", "content": f'{reformulated_prompt}'})
|
120 |
+
formatted_prompt = "\n".join([f"{m['role']}: {m['content']}" for m in func_caller])
|
121 |
|
122 |
+
#prompt = user_input
|
123 |
+
#device = accelerator.device # Automatically uses GPU or CPU based on accelerator setup
|
124 |
+
|
125 |
generation_config = GenerationConfig(
|
126 |
+
do_sample=(highest_label == "dialog continuation" or highest_label == "recommendation request"), # True if dialog continuation, else False
|
127 |
+
temperature=0.7 if highest_label == "dialog continuation" else (0.2 if highest_label == "recommendation request" else None), # Set temperature for specific intents
|
128 |
+
top_k = 5 if highest_label == "recommendation request" else None,
|
129 |
+
#attention_mask=attention_mask,
|
130 |
+
max_length=150,
|
131 |
+
repetition_penalty=1.2,
|
132 |
+
length_penalty=1.0,
|
133 |
+
no_repeat_ngram_size=2,
|
134 |
+
num_return_sequences=1,
|
135 |
+
pad_token_id=tokenizer.eos_token_id,
|
136 |
+
#stop_sequences=["User:", "Assistant:", "\n"],
|
137 |
+
)
|
138 |
+
|
139 |
+
# Generate response
|
140 |
+
gpt_inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device)
|
141 |
+
gpt_output = model.generate(gpt_inputs["input_ids"], max_new_tokens=50, generation_config=generation_config)
|
142 |
+
final_response = tokenizer.decode(gpt_output[0], skip_special_tokens=True)
|
143 |
+
# Extract AI's response only (omit the prompt)
|
144 |
+
#ai_response2 = final_response.replace(reformulated_prompt, "").strip()
|
145 |
+
ai_response = re.sub(re.escape(formatted_prompt), "", final_response, flags=re.IGNORECASE).strip()
|
146 |
+
#ai_response = re.split(r'(?<=\w[.!?]) +', ai_response)
|
147 |
+
ai_response = [s.strip() for s in re.split(r'(?<=\w[.!?]) +', ai_response) if s]
|
148 |
+
|
149 |
+
# Encode the prompt and candidates
|
150 |
+
prompt_embedding = bertmodel.encode(formatted_prompt, convert_to_tensor=True)
|
151 |
+
candidate_embeddings = bertmodel.encode(ai_response, convert_to_tensor=True)
|
152 |
+
|
153 |
+
# Compute similarity scores between prompt and each candidate
|
154 |
+
similarities = util.pytorch_cos_sim(prompt_embedding, candidate_embeddings)[0]
|
155 |
+
|
156 |
+
# Find the candidate with the highest similarity score
|
157 |
+
|
158 |
+
best_index = similarities.argmax()
|
159 |
+
best_response = ai_response[best_index]
|
160 |
+
|
161 |
+
# Assuming best_response is already defined and contains the generated response
|
162 |
+
|
163 |
+
if highest_label == "dialog continuation":
|
164 |
+
# Split the response into sentences
|
165 |
+
sentences = best_response.split('. ')
|
166 |
+
# Take the first three sentences and join them back together
|
167 |
+
best_response = '. '.join(sentences[:3]) if len(sentences) > 3 else best_response
|
168 |
+
|
169 |
+
# Append the user's message to the chat history
|
170 |
+
chat_history.append({'role': 'user', 'content': user_input})
|
171 |
+
chat_history.append({'role': 'assistant', 'content': best_response})
|
172 |
+
|
173 |
+
return best_response
|
174 |
|
175 |
except Exception as e:
|
176 |
print("Error in generate_response:")
|
177 |
print(traceback.format_exc()) # Logs the full traceback
|
178 |
raise e
|
179 |
+
|
|
|
|
|
|
|
180 |
@app.route("/send_message", methods=["POST"])
|
181 |
def handle_post_request():
|
182 |
try:
|
|
|
185 |
return jsonify({"error": "No JSON data provided"}), 400
|
186 |
|
187 |
message = data.get("inputs", "No message provided.")
|
188 |
+
model_id = data.get("model_id", "meta-llama/Llama-3.1-8B-Instruct")
|
189 |
|
190 |
print(f"Processing request with model_id: {model_id}")
|
191 |
model_response = generate_response(message, model_id)
|
|
|
195 |
"model_id": model_id,
|
196 |
"status": "POST request successful!"
|
197 |
})
|
198 |
+
|
199 |
except Exception as e:
|
200 |
print("Error handling POST request:")
|
201 |
print(traceback.format_exc()) # Logs the full traceback
|