File size: 4,868 Bytes
922e494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import torch
import gc
import os
import torch.nn as nn
import urllib.request
import cv2
from tqdm import tqdm

HTTP_PREFIXES = [
    'http',
    'data:image/jpeg',
]


RELEASED_WEIGHTS = {
    "hayao:v2": (
        # Dataset trained on Google Landmark micro as training real photo
        "v2",
        "https://github.com/ptran1203/pytorch-animeGAN/releases/download/v1.1/GeneratorV2_gldv2_Hayao.pt"
    ),
    "hayao:v1": (
        "v1",
        "https://github.com/ptran1203/pytorch-animeGAN/releases/download/v1.0/generator_hayao.pth"
    ),
    "hayao": (
        "v1",
        "https://github.com/ptran1203/pytorch-animeGAN/releases/download/v1.0/generator_hayao.pth"
    ),
    "shinkai:v1": (
        "v1",
        "https://github.com/ptran1203/pytorch-animeGAN/releases/download/v1.0/generator_shinkai.pth"
    ),
    "shinkai": (
        "v1",
        "https://github.com/ptran1203/pytorch-animeGAN/releases/download/v1.0/generator_shinkai.pth"
    ),
}

def is_image_file(path):
    _, ext = os.path.splitext(path)
    return ext.lower() in (".png", ".jpg", ".jpeg")


def read_image(path):
    """
    Read image from given path
    """

    if any(path.startswith(p) for p in HTTP_PREFIXES):
        urllib.request.urlretrieve(path, "temp.jpg")
        path = "temp.jpg"

    return cv2.imread(path)[: ,: ,::-1]


def save_checkpoint(model, path, optimizer=None, epoch=None):
    checkpoint = {
        'model_state_dict': model.state_dict(),
        'epoch': epoch,
    }
    if optimizer is  not None:
        checkpoint['optimizer_state_dict'] = optimizer.state_dict()

    torch.save(checkpoint, path)

def maybe_remove_module(state_dict):
    # Remove added module ins state_dict in ddp training
    # https://discuss.pytorch.org/t/why-are-state-dict-keys-getting-prepended-with-the-string-module/104627/3
    new_state_dict = {}
    module_str = 'module.'
    for k, v in state_dict.items():

        if k.startswith(module_str):
            k = k[len(module_str):]
        new_state_dict[k] = v
    return new_state_dict


def load_checkpoint(model, path, optimizer=None, strip_optimizer=False, map_location=None) -> int:
    state_dict = load_state_dict(path, map_location)
    model_state_dict = maybe_remove_module(state_dict['model_state_dict'])
    model.load_state_dict(
        model_state_dict,
        strict=True
    )
    if 'optimizer_state_dict' in state_dict:
        if optimizer is not None:
            optimizer.load_state_dict(state_dict['optimizer_state_dict'])
        if strip_optimizer:
            del state_dict["optimizer_state_dict"]
            torch.save(state_dict, path)
            print(f"Optimizer stripped and saved to {path}")

    epoch = state_dict.get('epoch', 0)
    return epoch


def load_state_dict(weight, map_location) -> dict:
    if weight.lower() in RELEASED_WEIGHTS:
        weight = _download_weight(weight.lower())

    if map_location is None:
        # auto select
        map_location = 'cuda' if torch.cuda.is_available() else 'cpu'
    state_dict = torch.load(weight, map_location=map_location)

    return state_dict


def initialize_weights(net):
    for m in net.modules():
        try:
            if isinstance(m, nn.Conv2d):
                # m.weight.data.normal_(0, 0.02)
                torch.nn.init.xavier_uniform_(m.weight)
                m.bias.data.zero_()
            elif isinstance(m, nn.ConvTranspose2d):
                # m.weight.data.normal_(0, 0.02)
                torch.nn.init.xavier_uniform_(m.weight)
                m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                # m.weight.data.normal_(0, 0.02)
                torch.nn.init.xavier_uniform_(m.weight)
                m.bias.data.zero_()
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
        except Exception as e:
            # print(f'SKip layer {m}, {e}')
            pass


def set_lr(optimizer, lr):
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr


class DownloadProgressBar(tqdm):
    '''
    https://stackoverflow.com/questions/15644964/python-progress-bar-and-downloads
    '''
    def update_to(self, b=1, bsize=1, tsize=None):
        if tsize is not None:
            self.total = tsize
        self.update(b * bsize - self.n)


def _download_weight(weight):
    '''
    Download weight and save to local file
    '''
    os.makedirs('.cache', exist_ok=True)
    url = RELEASED_WEIGHTS[weight][1]
    filename = os.path.basename(url)
    save_path = f'.cache/{filename}'

    if os.path.isfile(save_path):
        return save_path

    desc = f'Downloading {url} to {save_path}'
    with DownloadProgressBar(unit='B', unit_scale=True, miniters=1, desc=desc) as t:
        urllib.request.urlretrieve(url, save_path, reporthook=t.update_to)

    return save_path