Spaces:
Running
Running
File size: 11,350 Bytes
ad243cd 4c4c8ef 302545f 4c4c8ef e567105 4c4c8ef e567105 302545f e567105 4c4c8ef e567105 4c4c8ef e567105 4c4c8ef 117abec ad243cd 623c086 ad243cd 623c086 ad243cd 623c086 ad243cd 459da92 ad243cd 459da92 ad243cd 4c4c8ef 459da92 4c4c8ef ad243cd 459da92 91cc48b 459da92 195428b ad243cd 459da92 ad243cd 459da92 ad243cd 459da92 f3bbb27 459da92 f3bbb27 ad243cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import torch
import cv2
import os
import numpy as np
import shutil
from models.anime_gan import GeneratorV1
from models.anime_gan_v2 import GeneratorV2
from models.anime_gan_v3 import GeneratorV3
from utils.common import load_checkpoint, RELEASED_WEIGHTS
from utils.image_processing import resize_image, normalize_input, denormalize_input
from utils import read_image, is_image_file
from tqdm import tqdm
# from torch.cuda.amp import autocast
try:
import matplotlib.pyplot as plt
except ImportError:
plt = None
try:
import moviepy.video.io.ffmpeg_writer as ffmpeg_writer
from moviepy.video.io.VideoFileClip import VideoFileClip
except ImportError:
ffmpeg_writer = None
VideoFileClip = None
VALID_FORMATS = {
'jpeg', 'jpg', 'jpe',
'png', 'bmp',
}
def auto_load_weight(weight, version=None, map_location=None):
"""Auto load Generator version from weight."""
weight_name = os.path.basename(weight).lower()
if version is not None:
version = version.lower()
assert version in {"v1", "v2", "v3"}, f"Version {version} does not exist"
# If version is provided, use it.
cls = {
"v1": GeneratorV1,
"v2": GeneratorV2,
"v3": GeneratorV3
}[version]
else:
# Try to get class by name of weight file
# For convenenice, weight should start with classname
# e.g: Generatorv2_{anything}.pt
if weight_name in RELEASED_WEIGHTS:
version = RELEASED_WEIGHTS[weight_name][0]
return auto_load_weight(weight, version=version, map_location=map_location)
elif weight_name.startswith("generatorv2"):
cls = GeneratorV2
elif weight_name.startswith("generatorv3"):
cls = GeneratorV3
elif weight_name.startswith("generator"):
cls = GeneratorV1
else:
raise ValueError((f"Can not get Model from {weight_name}, "
"you might need to explicitly specify version"))
model = cls()
load_checkpoint(model, weight, strip_optimizer=True, map_location=map_location)
model.eval()
return model
class Predictor:
def __init__(self, weight='hayao', device='cpu', amp=True):
# if not torch.cuda.is_available():
# device = 'cpu'
# # Amp not working on cpu
# amp = False
self.amp = False # Automatic Mixed Precision
#self.device_type = 'cuda' if device.startswith('cuda') else 'cpu'
self.device_type = 'cpu'
self.device = torch.device(device)
self.G = auto_load_weight(weight, map_location=device)
self.G.to(self.device)
def transform_and_show(
self,
image_path,
figsize=(18, 10),
save_path=None
):
image = resize_image(read_image(image_path))
anime_img = self.transform(image)
anime_img = anime_img.astype('uint8')
fig = plt.figure(figsize=figsize)
fig.add_subplot(1, 2, 1)
# plt.title("Input")
plt.imshow(image)
plt.axis('off')
fig.add_subplot(1, 2, 2)
# plt.title("Anime style")
plt.imshow(anime_img[0])
plt.axis('off')
plt.tight_layout()
plt.show()
if save_path is not None:
plt.savefig(save_path)
def transform(self, image, denorm=True):
'''
Transform a image to animation
@Arguments:
- image: np.array, shape = (Batch, width, height, channels)
@Returns:
- anime version of image: np.array
'''
with torch.no_grad():
image = self.preprocess_images(image)
# image = image.to(self.device)
# with autocast(self.device_type, enabled=self.amp):
# print(image.dtype, self.G)
fake = self.G(image)
fake = fake.detach().cpu().numpy()
# Channel last
fake = fake.transpose(0, 2, 3, 1)
if denorm:
fake = denormalize_input(fake, dtype=np.uint8)
return fake
def transform_image(self,image):
# if not is_image_file(save_path):
# raise ValueError(f"{save_path} is not valid")
# image = read_image(file_path)
#
# if image is None:
# raise ValueError(f"Could not get image from {file_path}")
anime_img = self.transform(resize_image(image))[0]
return anime_img
# cv2.imwrite(save_path, anime_img[..., ::-1])
# print(f"Anime image saved to {save_path}")
def transform_in_dir(self, img_dir, dest_dir, max_images=0, img_size=(512, 512)):
'''
Read all images from img_dir, transform and write the result
to dest_dir
'''
os.makedirs(dest_dir, exist_ok=True)
files = os.listdir(img_dir)
files = [f for f in files if self.is_valid_file(f)]
print(f'Found {len(files)} images in {img_dir}')
if max_images:
files = files[:max_images]
for fname in tqdm(files):
image = cv2.imread(os.path.join(img_dir, fname))[:,:,::-1]
image = resize_image(image)
anime_img = self.transform(image)[0]
ext = fname.split('.')[-1]
fname = fname.replace(f'.{ext}', '')
cv2.imwrite(os.path.join(dest_dir, f'{fname}.jpg'), anime_img[..., ::-1])
def transform_video(self, input_path, output_path, batch_size=4, start=0, end=0):
end = end or None
# if not os.path.isfile(input_path):
# raise FileNotFoundError(f'{input_path} does not exist')
# output_dir = "/".join(output_path.split("/")[:-1])
# os.makedirs(output_dir, exist_ok=True)
# is_gg_drive = '/drive/' in output_path
# temp_file = ''
# if is_gg_drive:
# temp_file = f'tmp_anime.{output_path.split(".")[-1]}'
def transform_and_write(frames, count, writer):
anime_images = self.transform(frames)
for i in range(count):
img = np.clip(anime_images[i], 0, 255).astype(np.uint8)
writer.write(img)
video_capture = cv2.VideoCapture(input_path)
frame_width = int(video_capture.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(video_capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(video_capture.get(cv2.CAP_PROP_FPS))
frame_count = int(video_capture.get(cv2.CAP_PROP_FRAME_COUNT))
if start or end:
start_frame = int(start * fps)
end_frame = int(end * fps) if end else frame_count
video_capture.set(cv2.CAP_PROP_POS_FRAMES, start_frame)
frame_count = end_frame - start_frame
video_writer = cv2.VideoWriter(
output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (frame_width, frame_height))
print(f'Transforming video {input_path}, {frame_count} frames, size: ({frame_width}, {frame_height})')
batch_shape = (batch_size, frame_height, frame_width, 3)
frames = np.zeros(batch_shape, dtype=np.uint8)
frame_idx = 0
try:
for _ in tqdm(range(frame_count)):
ret, frame = video_capture.read()
if not ret:
break
frames[frame_idx] = frame
frame_idx += 1
if frame_idx == batch_size:
transform_and_write(frames, frame_idx, video_writer)
frame_idx = 0
except Exception as e:
print(e)
finally:
video_capture.release()
video_writer.release()
# if temp_file:
# shutil.move(temp_file, output_path)
# print(f'Animation video saved to {output_path}')
def transform_video1(self, video, batch_size, start, end):
#end = end or None
# if not os.path.isfile(input_path):
# raise FileNotFoundError(f'{input_path} does not exist')
# output_dir = "/".join(output_path.split("/")[:-1])
# os.makedirs(output_dir, exist_ok=True)
# is_gg_drive = '/drive/' in output_path
# temp_file = ''
# if is_gg_drive:
# temp_file = f'tmp_anime.{output_path.split(".")[-1]}'
# def transform_and_save(self, frames, count):
# transformed_frames = []
# anime_images = self.transform(frames)
# for i in range(count):
# img = np.clip(anime_images[i], 0, 255).astype(np.uint8)
# transformed_frames.append(img)
# return transformed_frames
def transform_and_write(frames, count, video_buffer):
anime_images = self.transform(frames)
for i in range(count):
img = np.clip(anime_images[i], 0, 255).astype(np.uint8)
success, encoded_image = cv2.imencode('.jpg', img)
if success:
video_buffer.append(encoded_image.tobytes())
video_capture = cv2.VideoCapture(video)
frame_width = int(video_capture.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(video_capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(video_capture.get(cv2.CAP_PROP_FPS))
frame_count = int(video_capture.get(cv2.CAP_PROP_FRAME_COUNT))
print(f'Transforming video {frame_count} frames, size: ({frame_width}, {frame_height})')
if start or end:
start_frame = int(start * fps)
end_frame = int(end * fps) if end else frame_count
video_capture.set(cv2.CAP_PROP_POS_FRAMES, start_frame)
frame_count = end_frame - start_frame
# frame_count = len(video_frames)
# transformed_video_frames = []
video_buffer = []
# batch_shape = (batch_size) + video_frames[0].shape
# frames = np.zeros(batch_shape, dtype=np.uint8)
# frame_idx = 0
batch_shape = (batch_size, frame_height, frame_width, 3)
frames = np.zeros(batch_shape, dtype=np.uint8)
frame_idx = 0
try:
for _ in range(frame_count):
ret, frame = video_capture.read()
if not ret:
break
frames[frame_idx] = frame
frame_idx += 1
if frame_idx == batch_size:
transform_and_write(frames, frame_idx, video_buffer)
frame_idx = 0
except Exception as e:
print(e)
finally:
video_capture.release()
return video_buffer
def preprocess_images(self, images):
'''
Preprocess image for inference
@Arguments:
- images: np.ndarray
@Returns
- images: torch.tensor
'''
images = images.astype(np.float32)
# Normalize to [-1, 1]
images = normalize_input(images)
images = torch.from_numpy(images)
images = images.to(self.device)
# Add batch dim
if len(images.shape) == 3:
images = images.unsqueeze(0)
# channel first
images = images.permute(0, 3, 1, 2)
return images
@staticmethod
def is_valid_file(fname):
ext = fname.split('.')[-1]
return ext in VALID_FORMATS
|