cartoonize / models /anime_gan_v2.py
YANGYYYY's picture
Upload 13 files
7e4e601 verified
raw
history blame
2.39 kB
import torch.nn as nn
from models.conv_blocks import InvertedResBlock
from models.conv_blocks import ConvBlock
from models.conv_blocks import UpConvLNormLReLU
from utils.common import initialize_weights
class GeneratorV2(nn.Module):
def __init__(self, dataset=''):
super(GeneratorV2, self).__init__()
self.name = f'{self.__class__.__name__}_{dataset}'
bias = False
self.conv_block1 = nn.Sequential(
ConvBlock(3, 32, kernel_size=7, stride=1, norm_type="layer", bias=bias),
ConvBlock(32, 64, kernel_size=3, stride=2, norm_type="layer", bias=bias),
ConvBlock(64, 64, kernel_size=3, stride=1, norm_type="layer", bias=bias),
)
self.conv_block2 = nn.Sequential(
ConvBlock(64, 128, kernel_size=3, stride=2, norm_type="layer", bias=bias),
ConvBlock(128, 128, kernel_size=3, stride=1, norm_type="layer", bias=bias),
)
self.res_blocks = nn.Sequential(
ConvBlock(128, 128, kernel_size=3, stride=1, norm_type="layer", bias=bias),
InvertedResBlock(128, 256, expand_ratio=2, norm_type="layer", bias=bias),
InvertedResBlock(256, 256, expand_ratio=2, norm_type="layer", bias=bias),
InvertedResBlock(256, 256, expand_ratio=2, norm_type="layer", bias=bias),
InvertedResBlock(256, 256, expand_ratio=2, norm_type="layer", bias=bias),
ConvBlock(256, 128, kernel_size=3, stride=1, norm_type="layer", bias=bias),
)
self.upsample1 = nn.Sequential(
UpConvLNormLReLU(128, 128),
ConvBlock(128, 128, kernel_size=3, stride=1, norm_type="layer", bias=bias),
)
self.upsample2 = nn.Sequential(
UpConvLNormLReLU(128, 64),
ConvBlock(64, 64, kernel_size=3, stride=1, norm_type="layer", bias=bias),
ConvBlock(64, 32, kernel_size=7, stride=1, norm_type="layer", bias=bias),
)
self.decode_blocks = nn.Sequential(
nn.Conv2d(32, 3, kernel_size=1, stride=1, padding=0, bias=bias),
nn.Tanh(),
)
initialize_weights(self)
def forward(self, x):
out = self.conv_block1(x)
out = self.conv_block2(out)
out = self.res_blocks(out)
out = self.upsample1(out)
out = self.upsample2(out)
img = self.decode_blocks(out)
return img