YCHuang2112
commited on
Commit
•
6fdf224
1
Parent(s):
b45f399
Update app.py
Browse files
app.py
CHANGED
@@ -12,17 +12,41 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
-
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
16 |
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
18 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
|
20 |
-
|
21 |
-
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
|
|
|
|
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def translate(audio):
|
25 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
|
|
26 |
return outputs["text"]
|
27 |
|
28 |
|
|
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
+
# processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
16 |
|
17 |
+
# model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
18 |
+
# vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
|
20 |
+
processor = SpeechT5Processor.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
|
|
|
21 |
|
22 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device)
|
23 |
+
vocoder = SpeechT5HifiGan.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device)
|
24 |
|
25 |
+
# embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
26 |
+
# speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
27 |
+
|
28 |
+
dataset_nl = load_dataset("facebook/voxpopuli", "nl", split="train", streaming=True)
|
29 |
+
data_list = []
|
30 |
+
speaker_embeddings_list = []
|
31 |
+
|
32 |
+
for i, data in enumerate(iter(dataset_nl)):
|
33 |
+
# print(i)
|
34 |
+
if(i > 5):
|
35 |
+
break
|
36 |
+
data_list.append(data)
|
37 |
+
# data = next(iter(dataset_nl))
|
38 |
+
text = data["raw_text"]
|
39 |
+
# print(data)
|
40 |
+
speaker_embeddings = create_speaker_embedding(data["audio"]["array"])
|
41 |
+
speaker_embeddings = torch.tensor(speaker_embeddings)[None]
|
42 |
+
speaker_embeddings_list.append(speaker_embeddings)
|
43 |
+
|
44 |
+
|
45 |
+
speaker_embeddings = speaker_embeddings_list[4]
|
46 |
+
|
47 |
def translate(audio):
|
48 |
+
# outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
49 |
+
outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"language":"<|nl|>","task": "transcribe"})
|
50 |
return outputs["text"]
|
51 |
|
52 |
|