YCHuang2112 commited on
Commit
6fdf224
1 Parent(s): b45f399

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -6
app.py CHANGED
@@ -12,17 +12,41 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
 
 
23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
 
26
  return outputs["text"]
27
 
28
 
 
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
+ # processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
+ # model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
+ # vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
+ processor = SpeechT5Processor.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
 
21
 
22
+ model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device)
23
+ vocoder = SpeechT5HifiGan.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device)
24
 
25
+ # embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
26
+ # speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
27
+
28
+ dataset_nl = load_dataset("facebook/voxpopuli", "nl", split="train", streaming=True)
29
+ data_list = []
30
+ speaker_embeddings_list = []
31
+
32
+ for i, data in enumerate(iter(dataset_nl)):
33
+ # print(i)
34
+ if(i > 5):
35
+ break
36
+ data_list.append(data)
37
+ # data = next(iter(dataset_nl))
38
+ text = data["raw_text"]
39
+ # print(data)
40
+ speaker_embeddings = create_speaker_embedding(data["audio"]["array"])
41
+ speaker_embeddings = torch.tensor(speaker_embeddings)[None]
42
+ speaker_embeddings_list.append(speaker_embeddings)
43
+
44
+
45
+ speaker_embeddings = speaker_embeddings_list[4]
46
+
47
  def translate(audio):
48
+ # outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
49
+ outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"language":"<|nl|>","task": "transcribe"})
50
  return outputs["text"]
51
 
52