SVC-ykt / train.py
Yunshansongbai's picture
Upload 75 files
4585e41
raw
history blame
13.7 kB
import logging
import multiprocessing
import time
logging.getLogger('matplotlib').setLevel(logging.WARNING)
import os
import paddle
#paddle.device.set_device("cpu") #开启可用CPU进行炼丹
trainer:str = "admin"
from paddle.nn import functional as F
from paddle.io import DataLoader
from visualdl import LogWriter
from paddle.amp import auto_cast, GradScaler
import modules.commons as commons
import utils
from data_utils import TextAudioSpeakerLoader, TextAudioCollate
from models import (
SynthesizerTrn,
MultiPeriodDiscriminator,
)
from modules.losses import (
kl_loss,
generator_loss, discriminator_loss, feature_loss
)
from modules.mel_processing import mel_spectrogram_torch, spec_to_mel_torch
paddle.set_flags({'FLAGS_cudnn_exhaustive_search': True}) # 使用穷举搜索方法来选择卷积算法
global_step = 0
trainers:list[str] = []
start_time = time.time()
def main():
"""Assume Single Node Multi GPUs Training Only"""
#assert torch.cuda.is_available(), "CPU training is not allowed."
hps = utils.get_hparams()
n_gpus = paddle.device.cuda.device_count()
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = hps.train.port
run(n_gpus, hps, )
def run(n_gpus, hps):
global global_step,trainers,trainer
trainer = hps.trainer
rank = 0
if rank == 0:
logger = utils.get_logger(hps.model_dir)
logger.info(hps)
utils.check_git_hash(hps.model_dir)
writer = LogWriter(logdir=hps.model_dir)
writer_eval = LogWriter(logdir=os.path.join(hps.model_dir, "eval"))
paddle.seed(hps.train.seed)
paddle.device.set_device('cpu' if paddle.device.get_device() == 'cpu' else 'gpu:' + str(rank))
collate_fn = TextAudioCollate()
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps)
num_workers = 5 if multiprocessing.cpu_count() > 4 else multiprocessing.cpu_count()
train_loader = DataLoader(dataset = train_dataset,
num_workers=num_workers,
shuffle=False,
batch_size=hps.train.batch_size,
collate_fn=collate_fn)
if rank == 0:
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps)
eval_loader = DataLoader(dataset = eval_dataset,
num_workers = 1,
shuffle = False,
batch_size = 1,
drop_last = False,
collate_fn = collate_fn)
net_g = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model)
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm)
optim_g = paddle.optimizer.AdamW(
parameters = net_g.parameters(),
learning_rate = hps.train.learning_rate,
beta1 = hps.train.betas[0],
beta2 = hps.train.betas[1],
epsilon = hps.train.eps)
optim_d = paddle.optimizer.AdamW(
parameters = net_d.parameters(),
learning_rate = hps.train.learning_rate,
beta1 = hps.train.betas[0],
beta2 = hps.train.betas[1],
epsilon = hps.train.eps)
skip_optimizer = False
try:
_, _, _, epoch_str, trainers = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pdparams"), net_g,
optim_g, skip_optimizer)
_, _, _, epoch_str, trainers = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pdparams"), net_d,
optim_d, skip_optimizer)
if trainer not in trainers:
trainers.append(trainer)
epoch_str = max(epoch_str, 1)
global_step = (epoch_str - 1) * len(train_loader)
except Exception as e:
print(e)
logger.info("加载旧检查点失败……")
epoch_str = 1
global_step = 0
if skip_optimizer:
epoch_str = 1
global_step = 0
scheduler_g = paddle.optimizer.lr.ExponentialDecay(hps.train.learning_rate, gamma = hps.train.lr_decay, last_epoch = epoch_str - 2)
scheduler_d = paddle.optimizer.lr.ExponentialDecay(hps.train.learning_rate, gamma = hps.train.lr_decay, last_epoch = epoch_str - 2)
optim_g = paddle.optimizer.AdamW(
parameters = net_g.parameters(),
learning_rate = scheduler_g,
beta1 = hps.train.betas[0],
beta2 = hps.train.betas[1],
epsilon = hps.train.eps)
optim_d = paddle.optimizer.AdamW(
parameters = net_d.parameters(),
learning_rate = scheduler_d,
beta1 = hps.train.betas[0],
beta2 = hps.train.betas[1],
epsilon = hps.train.eps)
scaler = GradScaler(enable = hps.train.fp16_run)
for epoch in range(epoch_str, hps.train.epochs + 1):
if rank == 0:
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
[train_loader, eval_loader], logger, [writer, writer_eval])
else:
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
[train_loader, None], None, None)
scheduler_g.step()
scheduler_d.step()
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler:GradScaler, loaders, logger:logging.Logger, writers:list or None):
net_g, net_d = nets
optim_g, optim_d = optims
scheduler_g, scheduler_d = schedulers
train_loader, eval_loader = loaders
if writers is not None:
writer, writer_eval = writers
# train_loader.batch_sampler.set_epoch(epoch)
global global_step
net_g.train()
net_d.train()
for batch_idx, items in enumerate(train_loader):
c, f0, spec, y, spk, lengths, uv = items
g = spk
mel = spec_to_mel_torch(
spec,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax)
with auto_cast(enable=hps.train.fp16_run):
y_hat, ids_slice, z_mask, \
(z, z_p, m_p, logs_p, m_q, logs_q), pred_lf0, norm_lf0, lf0 = net_g(c, f0, uv, spec, g=g, c_lengths=lengths,
spec_lengths=lengths)
y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax
)
y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
# Discriminator
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
with auto_cast(enable=False):
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
loss_disc_all = loss_disc
optim_d.clear_grad()
scaler.scale(loss_disc_all).backward(retain_graph = True) # 将 Tensor 乘上缩放因子,返回缩放后的输出,返回loss然后反向传播
scaler.unscale_(optim_d) # 将参数的梯度除去缩放比例。
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
scaler.step(optim_d)
with auto_cast(enable=hps.train.fp16_run):
# Generator
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
with auto_cast(enable=False):
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
loss_fm = feature_loss(fmap_r, fmap_g)
loss_gen, losses_gen = generator_loss(y_d_hat_g)
loss_lf0 = F.mse_loss(pred_lf0, lf0)
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl + loss_lf0
optim_g.clear_grad()
scaler.scale(loss_gen_all).backward(retain_graph = True)
scaler.unscale_(optim_g)
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
scaler.step(optim_g)
scaler.update()
#lr = optim_g.state_dict()['LR_Scheduler']['last_lr'] # paddle优化器特有的字典
#losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_kl]
#logger.info(f"损失:{[x.item() for x in losses]},步数:{global_step},学习率:{lr}") # 梅花自己看的~
if rank == 0:
if global_step % hps.train.log_interval == 0:
lr = optim_g.state_dict()['LR_Scheduler']['last_lr'] # paddle优化器特有的字典
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_kl]
logger.info('训练回合:{} [{:.0f}%]'.format(
epoch,
100. * batch_idx / len(train_loader)))
logger.info(f"损失:{[x.item() for x in losses]},步数:{global_step},学习率:{lr}")
scalar_dict = {"损失/生成器/总损失": loss_gen_all, "损失/判别器/总损失": loss_disc_all, "学习率": lr,
"归一化判别器梯度": grad_norm_d, "归一化生成器梯度": grad_norm_g}
scalar_dict.update({"损失/生成器/特征匹配损失": loss_fm, "损失/生成器/梅尔频谱损失": loss_mel, "损失/生成器/KL散度": loss_kl,
"损失/生成器/基音损失": loss_lf0})
image_dict = {
"切片/原始梅尔频谱图": utils.plot_spectrogram_to_numpy(y_mel[0].detach().numpy()),
"切片/生成梅尔频谱图": utils.plot_spectrogram_to_numpy(y_hat_mel[0].detach().numpy()),
"全部/梅尔频谱图": utils.plot_spectrogram_to_numpy(mel[0].detach().numpy()),
"全部/基音损失": utils.plot_data_to_numpy(lf0[0, 0, :].numpy(),
pred_lf0[0, 0, :].detach().numpy()),
"全部/归一化基音损失": utils.plot_data_to_numpy(lf0[0, 0, :].numpy(),
norm_lf0[0, 0, :].detach().numpy())
}
utils.summarize(
writer=writer,
global_step=global_step,
images=image_dict,
scalars=scalar_dict
)
if global_step % hps.train.eval_interval == 0:
if hps.clean_logs:
os.system('clear')
evaluate(hps, net_g, eval_loader, writer_eval)
utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch,
os.path.join(hps.model_dir, "G_{}.pdparams".format(global_step)), trainers)
utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch,
os.path.join(hps.model_dir, "D_{}.pdparams".format(global_step)), trainers)
keep_ckpts = getattr(hps.train, 'keep_ckpts', 0)
if keep_ckpts > 0:
utils.clean_checkpoints(path_to_models=hps.model_dir, n_ckpts_to_keep=keep_ckpts, sort_by_time=True)
global_step += 1
if rank == 0:
global start_time
now = time.time()
durtaion = format(now - start_time, '.2f')
logger.info(f'====> 回合:{epoch}, 消耗 {durtaion} 秒')
start_time = now
def evaluate(hps, generator, eval_loader, writer_eval):
generator.eval()
image_dict = {}
audio_dict = {}
with paddle.no_grad():
for batch_idx, items in enumerate(eval_loader):
c, f0, spec, y, spk, _, uv = items
g = spk[:1]
spec, y = spec[:1], y[:1]
c = c[:1]
f0 = f0[:1]
uv= uv[:1]
mel = spec_to_mel_torch(
spec,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax)
y_hat = generator.infer(c, f0, uv, g=g)
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1).cast('float32'),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax
)
audio_dict.update({
f"生成器测试数据/音频_{batch_idx}": y_hat[0],
f"地标真实数据/音频_{batch_idx}": y[0]
})
image_dict.update({
"生成器测试数据/梅尔频谱图": utils.plot_spectrogram_to_numpy(y_hat_mel[0].numpy()),
"地标真实数据/梅尔频谱图": utils.plot_spectrogram_to_numpy(mel[0].numpy())
})
utils.summarize(
writer=writer_eval,
global_step=global_step,
images=image_dict,
audios=audio_dict,
audio_sampling_rate=hps.data.sampling_rate
)
generator.train()
if __name__ == "__main__":
main()