Spaces:
Runtime error
Runtime error
import logging | |
import multiprocessing | |
import time | |
logging.getLogger('matplotlib').setLevel(logging.WARNING) | |
import os | |
import paddle | |
#paddle.device.set_device("cpu") #开启可用CPU进行炼丹 | |
trainer:str = "admin" | |
from paddle.nn import functional as F | |
from paddle.io import DataLoader | |
from visualdl import LogWriter | |
from paddle.amp import auto_cast, GradScaler | |
import modules.commons as commons | |
import utils | |
from data_utils import TextAudioSpeakerLoader, TextAudioCollate | |
from models import ( | |
SynthesizerTrn, | |
MultiPeriodDiscriminator, | |
) | |
from modules.losses import ( | |
kl_loss, | |
generator_loss, discriminator_loss, feature_loss | |
) | |
from modules.mel_processing import mel_spectrogram_torch, spec_to_mel_torch | |
paddle.set_flags({'FLAGS_cudnn_exhaustive_search': True}) # 使用穷举搜索方法来选择卷积算法 | |
global_step = 0 | |
trainers:list[str] = [] | |
start_time = time.time() | |
def main(): | |
"""Assume Single Node Multi GPUs Training Only""" | |
#assert torch.cuda.is_available(), "CPU training is not allowed." | |
hps = utils.get_hparams() | |
n_gpus = paddle.device.cuda.device_count() | |
os.environ['MASTER_ADDR'] = 'localhost' | |
os.environ['MASTER_PORT'] = hps.train.port | |
run(n_gpus, hps, ) | |
def run(n_gpus, hps): | |
global global_step,trainers,trainer | |
trainer = hps.trainer | |
rank = 0 | |
if rank == 0: | |
logger = utils.get_logger(hps.model_dir) | |
logger.info(hps) | |
utils.check_git_hash(hps.model_dir) | |
writer = LogWriter(logdir=hps.model_dir) | |
writer_eval = LogWriter(logdir=os.path.join(hps.model_dir, "eval")) | |
paddle.seed(hps.train.seed) | |
paddle.device.set_device('cpu' if paddle.device.get_device() == 'cpu' else 'gpu:' + str(rank)) | |
collate_fn = TextAudioCollate() | |
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps) | |
num_workers = 5 if multiprocessing.cpu_count() > 4 else multiprocessing.cpu_count() | |
train_loader = DataLoader(dataset = train_dataset, | |
num_workers=num_workers, | |
shuffle=False, | |
batch_size=hps.train.batch_size, | |
collate_fn=collate_fn) | |
if rank == 0: | |
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps) | |
eval_loader = DataLoader(dataset = eval_dataset, | |
num_workers = 1, | |
shuffle = False, | |
batch_size = 1, | |
drop_last = False, | |
collate_fn = collate_fn) | |
net_g = SynthesizerTrn( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
**hps.model) | |
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm) | |
optim_g = paddle.optimizer.AdamW( | |
parameters = net_g.parameters(), | |
learning_rate = hps.train.learning_rate, | |
beta1 = hps.train.betas[0], | |
beta2 = hps.train.betas[1], | |
epsilon = hps.train.eps) | |
optim_d = paddle.optimizer.AdamW( | |
parameters = net_d.parameters(), | |
learning_rate = hps.train.learning_rate, | |
beta1 = hps.train.betas[0], | |
beta2 = hps.train.betas[1], | |
epsilon = hps.train.eps) | |
skip_optimizer = False | |
try: | |
_, _, _, epoch_str, trainers = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pdparams"), net_g, | |
optim_g, skip_optimizer) | |
_, _, _, epoch_str, trainers = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pdparams"), net_d, | |
optim_d, skip_optimizer) | |
if trainer not in trainers: | |
trainers.append(trainer) | |
epoch_str = max(epoch_str, 1) | |
global_step = (epoch_str - 1) * len(train_loader) | |
except Exception as e: | |
print(e) | |
logger.info("加载旧检查点失败……") | |
epoch_str = 1 | |
global_step = 0 | |
if skip_optimizer: | |
epoch_str = 1 | |
global_step = 0 | |
scheduler_g = paddle.optimizer.lr.ExponentialDecay(hps.train.learning_rate, gamma = hps.train.lr_decay, last_epoch = epoch_str - 2) | |
scheduler_d = paddle.optimizer.lr.ExponentialDecay(hps.train.learning_rate, gamma = hps.train.lr_decay, last_epoch = epoch_str - 2) | |
optim_g = paddle.optimizer.AdamW( | |
parameters = net_g.parameters(), | |
learning_rate = scheduler_g, | |
beta1 = hps.train.betas[0], | |
beta2 = hps.train.betas[1], | |
epsilon = hps.train.eps) | |
optim_d = paddle.optimizer.AdamW( | |
parameters = net_d.parameters(), | |
learning_rate = scheduler_d, | |
beta1 = hps.train.betas[0], | |
beta2 = hps.train.betas[1], | |
epsilon = hps.train.eps) | |
scaler = GradScaler(enable = hps.train.fp16_run) | |
for epoch in range(epoch_str, hps.train.epochs + 1): | |
if rank == 0: | |
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, | |
[train_loader, eval_loader], logger, [writer, writer_eval]) | |
else: | |
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, | |
[train_loader, None], None, None) | |
scheduler_g.step() | |
scheduler_d.step() | |
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler:GradScaler, loaders, logger:logging.Logger, writers:list or None): | |
net_g, net_d = nets | |
optim_g, optim_d = optims | |
scheduler_g, scheduler_d = schedulers | |
train_loader, eval_loader = loaders | |
if writers is not None: | |
writer, writer_eval = writers | |
# train_loader.batch_sampler.set_epoch(epoch) | |
global global_step | |
net_g.train() | |
net_d.train() | |
for batch_idx, items in enumerate(train_loader): | |
c, f0, spec, y, spk, lengths, uv = items | |
g = spk | |
mel = spec_to_mel_torch( | |
spec, | |
hps.data.filter_length, | |
hps.data.n_mel_channels, | |
hps.data.sampling_rate, | |
hps.data.mel_fmin, | |
hps.data.mel_fmax) | |
with auto_cast(enable=hps.train.fp16_run): | |
y_hat, ids_slice, z_mask, \ | |
(z, z_p, m_p, logs_p, m_q, logs_q), pred_lf0, norm_lf0, lf0 = net_g(c, f0, uv, spec, g=g, c_lengths=lengths, | |
spec_lengths=lengths) | |
y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length) | |
y_hat_mel = mel_spectrogram_torch( | |
y_hat.squeeze(1), | |
hps.data.filter_length, | |
hps.data.n_mel_channels, | |
hps.data.sampling_rate, | |
hps.data.hop_length, | |
hps.data.win_length, | |
hps.data.mel_fmin, | |
hps.data.mel_fmax | |
) | |
y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice | |
# Discriminator | |
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach()) | |
with auto_cast(enable=False): | |
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g) | |
loss_disc_all = loss_disc | |
optim_d.clear_grad() | |
scaler.scale(loss_disc_all).backward(retain_graph = True) # 将 Tensor 乘上缩放因子,返回缩放后的输出,返回loss然后反向传播 | |
scaler.unscale_(optim_d) # 将参数的梯度除去缩放比例。 | |
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None) | |
scaler.step(optim_d) | |
with auto_cast(enable=hps.train.fp16_run): | |
# Generator | |
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat) | |
with auto_cast(enable=False): | |
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel | |
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl | |
loss_fm = feature_loss(fmap_r, fmap_g) | |
loss_gen, losses_gen = generator_loss(y_d_hat_g) | |
loss_lf0 = F.mse_loss(pred_lf0, lf0) | |
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl + loss_lf0 | |
optim_g.clear_grad() | |
scaler.scale(loss_gen_all).backward(retain_graph = True) | |
scaler.unscale_(optim_g) | |
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None) | |
scaler.step(optim_g) | |
scaler.update() | |
#lr = optim_g.state_dict()['LR_Scheduler']['last_lr'] # paddle优化器特有的字典 | |
#losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_kl] | |
#logger.info(f"损失:{[x.item() for x in losses]},步数:{global_step},学习率:{lr}") # 梅花自己看的~ | |
if rank == 0: | |
if global_step % hps.train.log_interval == 0: | |
lr = optim_g.state_dict()['LR_Scheduler']['last_lr'] # paddle优化器特有的字典 | |
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_kl] | |
logger.info('训练回合:{} [{:.0f}%]'.format( | |
epoch, | |
100. * batch_idx / len(train_loader))) | |
logger.info(f"损失:{[x.item() for x in losses]},步数:{global_step},学习率:{lr}") | |
scalar_dict = {"损失/生成器/总损失": loss_gen_all, "损失/判别器/总损失": loss_disc_all, "学习率": lr, | |
"归一化判别器梯度": grad_norm_d, "归一化生成器梯度": grad_norm_g} | |
scalar_dict.update({"损失/生成器/特征匹配损失": loss_fm, "损失/生成器/梅尔频谱损失": loss_mel, "损失/生成器/KL散度": loss_kl, | |
"损失/生成器/基音损失": loss_lf0}) | |
image_dict = { | |
"切片/原始梅尔频谱图": utils.plot_spectrogram_to_numpy(y_mel[0].detach().numpy()), | |
"切片/生成梅尔频谱图": utils.plot_spectrogram_to_numpy(y_hat_mel[0].detach().numpy()), | |
"全部/梅尔频谱图": utils.plot_spectrogram_to_numpy(mel[0].detach().numpy()), | |
"全部/基音损失": utils.plot_data_to_numpy(lf0[0, 0, :].numpy(), | |
pred_lf0[0, 0, :].detach().numpy()), | |
"全部/归一化基音损失": utils.plot_data_to_numpy(lf0[0, 0, :].numpy(), | |
norm_lf0[0, 0, :].detach().numpy()) | |
} | |
utils.summarize( | |
writer=writer, | |
global_step=global_step, | |
images=image_dict, | |
scalars=scalar_dict | |
) | |
if global_step % hps.train.eval_interval == 0: | |
if hps.clean_logs: | |
os.system('clear') | |
evaluate(hps, net_g, eval_loader, writer_eval) | |
utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, | |
os.path.join(hps.model_dir, "G_{}.pdparams".format(global_step)), trainers) | |
utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, | |
os.path.join(hps.model_dir, "D_{}.pdparams".format(global_step)), trainers) | |
keep_ckpts = getattr(hps.train, 'keep_ckpts', 0) | |
if keep_ckpts > 0: | |
utils.clean_checkpoints(path_to_models=hps.model_dir, n_ckpts_to_keep=keep_ckpts, sort_by_time=True) | |
global_step += 1 | |
if rank == 0: | |
global start_time | |
now = time.time() | |
durtaion = format(now - start_time, '.2f') | |
logger.info(f'====> 回合:{epoch}, 消耗 {durtaion} 秒') | |
start_time = now | |
def evaluate(hps, generator, eval_loader, writer_eval): | |
generator.eval() | |
image_dict = {} | |
audio_dict = {} | |
with paddle.no_grad(): | |
for batch_idx, items in enumerate(eval_loader): | |
c, f0, spec, y, spk, _, uv = items | |
g = spk[:1] | |
spec, y = spec[:1], y[:1] | |
c = c[:1] | |
f0 = f0[:1] | |
uv= uv[:1] | |
mel = spec_to_mel_torch( | |
spec, | |
hps.data.filter_length, | |
hps.data.n_mel_channels, | |
hps.data.sampling_rate, | |
hps.data.mel_fmin, | |
hps.data.mel_fmax) | |
y_hat = generator.infer(c, f0, uv, g=g) | |
y_hat_mel = mel_spectrogram_torch( | |
y_hat.squeeze(1).cast('float32'), | |
hps.data.filter_length, | |
hps.data.n_mel_channels, | |
hps.data.sampling_rate, | |
hps.data.hop_length, | |
hps.data.win_length, | |
hps.data.mel_fmin, | |
hps.data.mel_fmax | |
) | |
audio_dict.update({ | |
f"生成器测试数据/音频_{batch_idx}": y_hat[0], | |
f"地标真实数据/音频_{batch_idx}": y[0] | |
}) | |
image_dict.update({ | |
"生成器测试数据/梅尔频谱图": utils.plot_spectrogram_to_numpy(y_hat_mel[0].numpy()), | |
"地标真实数据/梅尔频谱图": utils.plot_spectrogram_to_numpy(mel[0].numpy()) | |
}) | |
utils.summarize( | |
writer=writer_eval, | |
global_step=global_step, | |
images=image_dict, | |
audios=audio_dict, | |
audio_sampling_rate=hps.data.sampling_rate | |
) | |
generator.train() | |
if __name__ == "__main__": | |
main() | |