YLX1965 commited on
Commit
7a6d53d
·
verified ·
1 Parent(s): 14ac0de

update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -30
app.py CHANGED
@@ -1,38 +1,13 @@
1
- import gradio as gr
2
- import os
3
- import requests
4
  from llama_cpp import Llama
5
 
6
- # 确保模型文件夹存在
7
- model_dir = "/home/user/models"
8
- os.makedirs(model_dir, exist_ok=True)
9
-
10
- # GGUF 模型文件名
11
- model_name = "unsloth.Q8_0.gguf"
12
- model_path = os.path.join(model_dir, model_name)
13
-
14
- # 如果模型文件不存在,则从 Hugging Face 下载
15
- hf_model_url = "https://huggingface.co/YLX1965/medical-model/resolve/main/unsloth.Q8_0.gguf"
16
-
17
- if not os.path.exists(model_path):
18
- print(f"Downloading model from {hf_model_url}...")
19
- response = requests.get(hf_model_url, stream=True)
20
- with open(model_path, "wb") as f:
21
- for chunk in response.iter_content(chunk_size=8192):
22
- f.write(chunk)
23
- print("Download complete.")
24
 
25
- # 加载 GGUF 模型
26
- llm = Llama(model_path=model_path)
27
-
28
- # 定义聊天函数
29
  def chat(prompt):
30
  output = llm(prompt, max_tokens=200)
31
  return output["choices"][0]["text"]
32
 
33
- # 创建 Gradio 界面
34
- interface = gr.Interface(fn=chat, inputs="text", outputs="text",
35
- title="Medical Chatbot",
36
- description="使用 GGUF 量化模型进行医疗文本生成")
37
-
38
  interface.launch()
 
 
 
 
1
  from llama_cpp import Llama
2
 
3
+ # 直接从 Hugging Face 加载模型(避免存储问题)
4
+ llm = Llama.from_pretrained("YLX1965/medical-model", filename="unsloth.Q8_0.gguf")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
 
 
 
 
6
  def chat(prompt):
7
  output = llm(prompt, max_tokens=200)
8
  return output["choices"][0]["text"]
9
 
10
+ # 运行 Gradio
11
+ import gradio as gr
12
+ interface = gr.Interface(fn=chat, inputs="text", outputs="text")
 
 
13
  interface.launch()