File size: 6,310 Bytes
6a570b5
 
 
 
 
4820fc0
6a570b5
 
4820fc0
0837027
 
 
 
 
 
 
 
 
 
6a570b5
 
 
 
 
4820fc0
 
 
0837027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a570b5
 
 
 
4820fc0
6a570b5
 
 
 
 
 
 
 
4820fc0
6a570b5
 
4820fc0
 
 
6a570b5
 
4820fc0
 
 
 
0837027
4820fc0
0837027
 
 
 
6a570b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0837027
 
 
 
 
4179d35
0837027
 
6a570b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0837027
6a570b5
 
 
 
 
 
 
 
 
 
0837027
6a570b5
 
 
 
 
 
 
0837027
6a570b5
 
 
 
 
 
0837027
 
 
6a570b5
 
 
 
 
0837027
6a570b5
0837027
6a570b5
 
0837027
 
 
 
 
 
 
 
 
 
6a570b5
 
 
 
 
0837027
6a570b5
 
 
 
 
 
 
 
0837027
6a570b5
 
 
 
 
4820fc0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import gradio as gr
import numpy as np
import random

from diffusers import DiffusionPipeline
from peft import PeftModel, PeftConfig
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"

# Model list including your LoRA model
MODEL_LIST = [
    "CompVis/stable-diffusion-v1-4",
    "stabilityai/sdxl-turbo",
    "runwayml/stable-diffusion-v1-5",
    "stabilityai/stable-diffusion-2-1",
    "YaArtemNosenko/dino_stickers",
]

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

# Cache to avoid re-initializing pipelines repeatedly
model_cache = {}

def load_pipeline(model_id: str):
    """
    Loads or retrieves a cached DiffusionPipeline.
    
    If the chosen model is your LoRA adapter, then load the base model 
    (CompVis/stable-diffusion-v1-4) and apply the LoRA weights.
    """
    if model_id in model_cache:
        return model_cache[model_id]
    
    if model_id == "YaArtemNosenko/dino_stickers":
        # Use the specified base model for your LoRA adapter.
        base_model = "CompVis/stable-diffusion-v1-4"
        pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch_dtype)
        # Load the LoRA weights
        pipe.unet = PeftModel.from_pretrained(
            pipe.unet, 
            model_id, 
            subfolder="unet", 
            torch_dtype=torch_dtype
        )
        pipe.text_encoder = PeftModel.from_pretrained(
            pipe.text_encoder, 
            model_id, 
            subfolder="text_encoder", 
            torch_dtype=torch_dtype
        )
    else:
        pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
    
    pipe.to(device)
    model_cache[model_id] = pipe
    return pipe

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def infer(
    model_id,
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    lora_scale,  # New parameter for adjusting LoRA scale
    progress=gr.Progress(track_tqdm=True),
):
    # Load the pipeline for the chosen model
    pipe = load_pipeline(model_id)

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator(device=device).manual_seed(seed)

    # If using the LoRA model, update the LoRA scale if supported.
    if model_id == "YaArtemNosenko/dino_stickers":
        # This assumes your pipeline's unet has a method to update the LoRA scale.
        if hasattr(pipe.unet, "set_lora_scale"):
            pipe.unet.set_lora_scale(lora_scale)
        else:
            print("Warning: LoRA scale adjustment method not found on UNet.")

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image Gradio Template")

        with gr.Row():
            # Dropdown to select the model from Hugging Face
            model_id = gr.Dropdown(
                label="Model",
                choices=MODEL_LIST,
                value=MODEL_LIST[0],  # Default model
            )

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,  # Default seed
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=20.0,
                    step=0.5,
                    value=7.0,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=20,
                )

            # New slider for LoRA scale.
            lora_scale = gr.Slider(
                label="LoRA Scale",
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.0,
                info="Adjust the influence of the LoRA weights",
            )

        gr.Examples(examples=examples, inputs=[prompt])
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            model_id,
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            lora_scale,  # Pass the new slider value
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()