Spaces:
Sleeping
Sleeping
File size: 6,310 Bytes
6a570b5 4820fc0 6a570b5 4820fc0 0837027 6a570b5 4820fc0 0837027 6a570b5 4820fc0 6a570b5 4820fc0 6a570b5 4820fc0 6a570b5 4820fc0 0837027 4820fc0 0837027 6a570b5 0837027 4179d35 0837027 6a570b5 0837027 6a570b5 0837027 6a570b5 0837027 6a570b5 0837027 6a570b5 0837027 6a570b5 0837027 6a570b5 0837027 6a570b5 0837027 6a570b5 0837027 6a570b5 4820fc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
from peft import PeftModel, PeftConfig
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
# Model list including your LoRA model
MODEL_LIST = [
"CompVis/stable-diffusion-v1-4",
"stabilityai/sdxl-turbo",
"runwayml/stable-diffusion-v1-5",
"stabilityai/stable-diffusion-2-1",
"YaArtemNosenko/dino_stickers",
]
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
# Cache to avoid re-initializing pipelines repeatedly
model_cache = {}
def load_pipeline(model_id: str):
"""
Loads or retrieves a cached DiffusionPipeline.
If the chosen model is your LoRA adapter, then load the base model
(CompVis/stable-diffusion-v1-4) and apply the LoRA weights.
"""
if model_id in model_cache:
return model_cache[model_id]
if model_id == "YaArtemNosenko/dino_stickers":
# Use the specified base model for your LoRA adapter.
base_model = "CompVis/stable-diffusion-v1-4"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch_dtype)
# Load the LoRA weights
pipe.unet = PeftModel.from_pretrained(
pipe.unet,
model_id,
subfolder="unet",
torch_dtype=torch_dtype
)
pipe.text_encoder = PeftModel.from_pretrained(
pipe.text_encoder,
model_id,
subfolder="text_encoder",
torch_dtype=torch_dtype
)
else:
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
pipe.to(device)
model_cache[model_id] = pipe
return pipe
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def infer(
model_id,
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale, # New parameter for adjusting LoRA scale
progress=gr.Progress(track_tqdm=True),
):
# Load the pipeline for the chosen model
pipe = load_pipeline(model_id)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
# If using the LoRA model, update the LoRA scale if supported.
if model_id == "YaArtemNosenko/dino_stickers":
# This assumes your pipeline's unet has a method to update the LoRA scale.
if hasattr(pipe.unet, "set_lora_scale"):
pipe.unet.set_lora_scale(lora_scale)
else:
print("Warning: LoRA scale adjustment method not found on UNet.")
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image Gradio Template")
with gr.Row():
# Dropdown to select the model from Hugging Face
model_id = gr.Dropdown(
label="Model",
choices=MODEL_LIST,
value=MODEL_LIST[0], # Default model
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42, # Default seed
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=20.0,
step=0.5,
value=7.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=20,
)
# New slider for LoRA scale.
lora_scale = gr.Slider(
label="LoRA Scale",
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0,
info="Adjust the influence of the LoRA weights",
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
model_id,
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale, # Pass the new slider value
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch() |