Spaces:
Sleeping
Sleeping
[ADD] Add IP adapter and ControlNet
Browse files
app.py
CHANGED
@@ -25,7 +25,13 @@ else:
|
|
25 |
# Cache to avoid re-initializing pipelines repeatedly
|
26 |
model_cache = {}
|
27 |
|
28 |
-
def load_pipeline(model_id
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
"""
|
30 |
Loads or retrieves a cached DiffusionPipeline.
|
31 |
|
@@ -34,11 +40,52 @@ def load_pipeline(model_id: str):
|
|
34 |
"""
|
35 |
if model_id in model_cache:
|
36 |
return model_cache[model_id]
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
if model_id == "YaArtemNosenko/dino_stickers":
|
39 |
# Use the specified base model for your LoRA adapter.
|
40 |
base_model = "CompVis/stable-diffusion-v1-4"
|
41 |
-
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch_dtype)
|
42 |
# Load the LoRA weights
|
43 |
pipe.unet = PeftModel.from_pretrained(
|
44 |
pipe.unet,
|
@@ -52,9 +99,21 @@ def load_pipeline(model_id: str):
|
|
52 |
subfolder="text_encoder",
|
53 |
torch_dtype=torch_dtype
|
54 |
)
|
|
|
|
|
55 |
else:
|
56 |
-
pipe = DiffusionPipeline.from_pretrained(model_id,
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
pipe.to(device)
|
59 |
model_cache[model_id] = pipe
|
60 |
return pipe
|
@@ -72,17 +131,36 @@ def infer(
|
|
72 |
height,
|
73 |
guidance_scale,
|
74 |
num_inference_steps,
|
75 |
-
lora_scale,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
progress=gr.Progress(track_tqdm=True),
|
77 |
):
|
78 |
# Load the pipeline for the chosen model
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
if randomize_seed:
|
82 |
seed = random.randint(0, MAX_SEED)
|
83 |
|
84 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
85 |
-
|
86 |
# If using the LoRA model, update the LoRA scale if supported.
|
87 |
if model_id == "YaArtemNosenko/dino_stickers":
|
88 |
# This assumes your pipeline's unet has a method to update the LoRA scale.
|
@@ -90,17 +168,15 @@ def infer(
|
|
90 |
pipe.unet.set_lora_scale(lora_scale)
|
91 |
else:
|
92 |
print("Warning: LoRA scale adjustment method not found on UNet.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
image = pipe(
|
95 |
-
prompt=prompt,
|
96 |
-
negative_prompt=negative_prompt,
|
97 |
-
guidance_scale=guidance_scale,
|
98 |
-
num_inference_steps=num_inference_steps,
|
99 |
-
width=width,
|
100 |
-
height=height,
|
101 |
-
generator=generator,
|
102 |
-
).images[0]
|
103 |
-
|
104 |
return image, seed
|
105 |
|
106 |
examples = [
|
@@ -201,6 +277,61 @@ with gr.Blocks(css=css) as demo:
|
|
201 |
value=1.0,
|
202 |
info="Adjust the influence of the LoRA weights",
|
203 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
gr.Examples(examples=examples, inputs=[prompt])
|
206 |
gr.on(
|
|
|
25 |
# Cache to avoid re-initializing pipelines repeatedly
|
26 |
model_cache = {}
|
27 |
|
28 |
+
def load_pipeline(model_id,
|
29 |
+
lora_scale,
|
30 |
+
controlnet_checkbox,
|
31 |
+
controlnet_mode,
|
32 |
+
ip_adapter_checkbox,
|
33 |
+
ip_adapter_scale
|
34 |
+
):
|
35 |
"""
|
36 |
Loads or retrieves a cached DiffusionPipeline.
|
37 |
|
|
|
40 |
"""
|
41 |
if model_id in model_cache:
|
42 |
return model_cache[model_id]
|
43 |
+
|
44 |
+
if controlnet_checkbox:
|
45 |
+
if controlnet_mode == "depth_map":
|
46 |
+
controlnet = ControlNetModel.from_pretrained(
|
47 |
+
"lllyasviel/sd-controlnet-depth",
|
48 |
+
cache_dir="./models_cache",
|
49 |
+
torch_dtype=torch_dtype
|
50 |
+
)
|
51 |
+
elif controlnet_mode == "pose_estimation":
|
52 |
+
controlnet = ControlNetModel.from_pretrained(
|
53 |
+
"lllyasviel/sd-controlnet-openpose",
|
54 |
+
cache_dir="./models_cache",
|
55 |
+
torch_dtype=torch_dtype
|
56 |
+
)
|
57 |
+
elif controlnet_mode == "normal_map":
|
58 |
+
controlnet = ControlNetModel.from_pretrained(
|
59 |
+
"lllyasviel/sd-controlnet-normal",
|
60 |
+
cache_dir="./models_cache",
|
61 |
+
torch_dtype=torch_dtype
|
62 |
+
)
|
63 |
+
elif controlnet_mode == "scribbles":
|
64 |
+
controlnet = ControlNetModel.from_pretrained(
|
65 |
+
"lllyasviel/sd-controlnet-scribble",
|
66 |
+
cache_dir="./models_cache",
|
67 |
+
torch_dtype=torch_dtype
|
68 |
+
)
|
69 |
+
else:
|
70 |
+
controlnet = ControlNetModel.from_pretrained(
|
71 |
+
"lllyasviel/sd-controlnet-canny",
|
72 |
+
cache_dir="./models_cache",
|
73 |
+
torch_dtype=torch_dtype
|
74 |
+
)
|
75 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(model_id,
|
76 |
+
controlnet=controlnet,
|
77 |
+
torch_dtype=torch_dtype,
|
78 |
+
safety_checker=None).to(device)
|
79 |
+
# params['image'] = controlnet_image
|
80 |
+
# params['controlnet_conditioning_scale'] = float(controlnet_strength)
|
81 |
+
else:
|
82 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id,
|
83 |
+
torch_dtype=torch_dtype,
|
84 |
+
safety_checker=None).to(device)
|
85 |
+
|
86 |
if model_id == "YaArtemNosenko/dino_stickers":
|
87 |
# Use the specified base model for your LoRA adapter.
|
88 |
base_model = "CompVis/stable-diffusion-v1-4"
|
|
|
89 |
# Load the LoRA weights
|
90 |
pipe.unet = PeftModel.from_pretrained(
|
91 |
pipe.unet,
|
|
|
99 |
subfolder="text_encoder",
|
100 |
torch_dtype=torch_dtype
|
101 |
)
|
102 |
+
pipe.unet.load_state_dict({k: lora_scale * v for k, v in pipe.unet.state_dict().items()})
|
103 |
+
pipe.text_encoder.load_state_dict({k: lora_scale * v for k, v in pipe.text_encoder.state_dict().items()})
|
104 |
else:
|
105 |
+
pipe = DiffusionPipeline.from_pretrained(model_id,
|
106 |
+
torch_dtype=torch_dtype
|
107 |
+
)
|
108 |
+
|
109 |
+
if ip_adapter_checkbox:
|
110 |
+
pipe.load_ip_adapter("h94/IP-Adapter",
|
111 |
+
subfolder="models",
|
112 |
+
weight_name="ip-adapter-plus_sd15.bin"
|
113 |
+
)
|
114 |
+
pipe.set_ip_adapter_scale(ip_adapter_scale)
|
115 |
+
# params['ip_adapter_image'] = ip_adapter_image
|
116 |
+
|
117 |
pipe.to(device)
|
118 |
model_cache[model_id] = pipe
|
119 |
return pipe
|
|
|
131 |
height,
|
132 |
guidance_scale,
|
133 |
num_inference_steps,
|
134 |
+
lora_scale, # New parameter for adjusting LoRA scale
|
135 |
+
controlnet_checkbox=False, # используем ли мы controlnet
|
136 |
+
controlnet_conditioning_scale=0.0, # вес для controlnet
|
137 |
+
controlnet_mode="edge_detection", # вариант controlnet
|
138 |
+
controlnet_image=None, # картинка для controlnet
|
139 |
+
ip_adapter_checkbox=False, # используется ли ip адаптера
|
140 |
+
ip_adapter_scale=0.0, # вес для ip адаптера
|
141 |
+
ip_adapter_image=None, # картинка для ip адаптера
|
142 |
progress=gr.Progress(track_tqdm=True),
|
143 |
):
|
144 |
# Load the pipeline for the chosen model
|
145 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
146 |
+
params = {'prompt': prompt,
|
147 |
+
'negative_prompt': negative_prompt,
|
148 |
+
'guidance_scale': guidance_scale,
|
149 |
+
'num_inference_steps': num_inference_steps,
|
150 |
+
'width': width,
|
151 |
+
'height': height,
|
152 |
+
'generator': generator
|
153 |
+
}
|
154 |
+
pipe = load_pipeline(lora_scale,
|
155 |
+
controlnet_checkbox,
|
156 |
+
controlnet_mode,
|
157 |
+
ip_adapter_checkbox,
|
158 |
+
ip_adapter_scale
|
159 |
+
)
|
160 |
|
161 |
if randomize_seed:
|
162 |
seed = random.randint(0, MAX_SEED)
|
163 |
|
|
|
|
|
164 |
# If using the LoRA model, update the LoRA scale if supported.
|
165 |
if model_id == "YaArtemNosenko/dino_stickers":
|
166 |
# This assumes your pipeline's unet has a method to update the LoRA scale.
|
|
|
168 |
pipe.unet.set_lora_scale(lora_scale)
|
169 |
else:
|
170 |
print("Warning: LoRA scale adjustment method not found on UNet.")
|
171 |
+
# если используем controlnet
|
172 |
+
if controlnet_checkbox:
|
173 |
+
params['image'] = controlnet_image
|
174 |
+
params['controlnet_conditioning_scale'] = float(controlnet_conditioning_scale)
|
175 |
+
# если используем IP адаптер
|
176 |
+
if ip_adapter_checkbox:
|
177 |
+
params['ip_adapter_image'] = ip_adapter_image
|
178 |
|
179 |
+
image = pipe(**params).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
return image, seed
|
181 |
|
182 |
examples = [
|
|
|
277 |
value=1.0,
|
278 |
info="Adjust the influence of the LoRA weights",
|
279 |
)
|
280 |
+
with gr.Row():
|
281 |
+
controlnet_checkbox = gr.Checkbox(
|
282 |
+
label="ControlNet",
|
283 |
+
value=False
|
284 |
+
)
|
285 |
+
with gr.Column(visible=False) as controlnet_params:
|
286 |
+
controlnet_conditioning_scale = gr.Slider(
|
287 |
+
label="ControlNet conditioning scale",
|
288 |
+
minimum=0.0,
|
289 |
+
maximum=1.0,
|
290 |
+
step=0.01,
|
291 |
+
value=1.0,
|
292 |
+
)
|
293 |
+
controlnet_mode = gr.Dropdown(
|
294 |
+
label="ControlNet mode",
|
295 |
+
choices=["edge_detection",
|
296 |
+
"depth_map",
|
297 |
+
"pose_estimation",
|
298 |
+
"normal_map",
|
299 |
+
"scribbles"],
|
300 |
+
value="edge_detection",
|
301 |
+
max_choices=1
|
302 |
+
)
|
303 |
+
controlnet_image = gr.Image(
|
304 |
+
label="ControlNet condition image",
|
305 |
+
type="pil",
|
306 |
+
format="png"
|
307 |
+
)
|
308 |
+
controlnet_checkbox.change(
|
309 |
+
fn=lambda x: gr.Row.update(visible=x),
|
310 |
+
inputs=controlnet_checkbox,
|
311 |
+
outputs=controlnet_params
|
312 |
+
)
|
313 |
+
with gr.Row():
|
314 |
+
ip_adapter_checkbox = gr.Checkbox(
|
315 |
+
label="IPAdapter",
|
316 |
+
value=False
|
317 |
+
)
|
318 |
+
with gr.Column(visible=False) as ip_adapter_params:
|
319 |
+
ip_adapter_scale = gr.Slider(
|
320 |
+
label="IPAdapter scale",
|
321 |
+
minimum=0.0,
|
322 |
+
maximum=1.0,
|
323 |
+
step=0.01,
|
324 |
+
value=1.0,
|
325 |
+
)
|
326 |
+
ip_adapter_image = gr.Image(
|
327 |
+
label="IPAdapter condition image",
|
328 |
+
type="pil"
|
329 |
+
)
|
330 |
+
ip_adapter_checkbox.change(
|
331 |
+
fn=lambda x: gr.Row.update(visible=x),
|
332 |
+
inputs=ip_adapter_checkbox,
|
333 |
+
outputs=ip_adapter_params
|
334 |
+
)
|
335 |
|
336 |
gr.Examples(examples=examples, inputs=[prompt])
|
337 |
gr.on(
|