Spaces:
Running
Running
[DEBUG] Dedug custom nn
Browse files
app.py
CHANGED
@@ -41,6 +41,7 @@ def load_pipeline(model_id,
|
|
41 |
if model_id in model_cache:
|
42 |
return model_cache[model_id]
|
43 |
|
|
|
44 |
if controlnet_checkbox:
|
45 |
if controlnet_mode == "depth_map":
|
46 |
controlnet = ControlNetModel.from_pretrained(
|
@@ -72,39 +73,58 @@ def load_pipeline(model_id,
|
|
72 |
cache_dir="./models_cache",
|
73 |
torch_dtype=torch_dtype
|
74 |
)
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
# params['image'] = controlnet_image
|
80 |
# params['controlnet_conditioning_scale'] = float(controlnet_strength)
|
81 |
else:
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
torch_dtype=torch_dtype
|
107 |
-
)
|
108 |
|
109 |
if ip_adapter_checkbox:
|
110 |
pipe.load_ip_adapter("h94/IP-Adapter",
|
|
|
41 |
if model_id in model_cache:
|
42 |
return model_cache[model_id]
|
43 |
|
44 |
+
|
45 |
if controlnet_checkbox:
|
46 |
if controlnet_mode == "depth_map":
|
47 |
controlnet = ControlNetModel.from_pretrained(
|
|
|
73 |
cache_dir="./models_cache",
|
74 |
torch_dtype=torch_dtype
|
75 |
)
|
76 |
+
if model_id == "YaArtemNosenko/dino_stickers":
|
77 |
+
# Use the specified base model for your LoRA adapter.
|
78 |
+
base_model = "CompVis/stable-diffusion-v1-4"
|
79 |
+
# Load the LoRA weights
|
80 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(base_model,
|
81 |
+
controlnet=controlnet,
|
82 |
+
torch_dtype=torch_dtype,
|
83 |
+
safety_checker=None).to(device)
|
84 |
+
pipe.unet = PeftModel.from_pretrained(
|
85 |
+
pipe.unet,
|
86 |
+
model_id,
|
87 |
+
subfolder="unet",
|
88 |
+
torch_dtype=torch_dtype
|
89 |
+
)
|
90 |
+
pipe.text_encoder = PeftModel.from_pretrained(
|
91 |
+
pipe.text_encoder,
|
92 |
+
model_id,
|
93 |
+
subfolder="text_encoder",
|
94 |
+
torch_dtype=torch_dtype
|
95 |
+
)
|
96 |
+
else:
|
97 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(model_id,
|
98 |
+
controlnet=controlnet,
|
99 |
+
torch_dtype=torch_dtype,
|
100 |
+
safety_checker=None).to(device)
|
101 |
# params['image'] = controlnet_image
|
102 |
# params['controlnet_conditioning_scale'] = float(controlnet_strength)
|
103 |
else:
|
104 |
+
if model_id == "YaArtemNosenko/dino_stickers":
|
105 |
+
base_model = "CompVis/stable-diffusion-v1-4"
|
106 |
+
pipe = StableDiffusionPipeline.from_pretrained(base_model, torch_dtype=torch_dtype)
|
107 |
+
# Load the LoRA weights
|
108 |
+
pipe.unet = PeftModel.from_pretrained(
|
109 |
+
pipe.unet,
|
110 |
+
model_id,
|
111 |
+
subfolder="unet",
|
112 |
+
torch_dtype=torch_dtype
|
113 |
+
)
|
114 |
+
|
115 |
+
pipe.text_encoder = PeftModel.from_pretrained(
|
116 |
+
pipe.text_encoder,
|
117 |
+
model_id,
|
118 |
+
subfolder="text_encoder",
|
119 |
+
torch_dtype=torch_dtype
|
120 |
+
)
|
121 |
+
else:
|
122 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id,
|
123 |
+
torch_dtype=torch_dtype,
|
124 |
+
safety_checker=None).to(device)
|
125 |
+
|
126 |
+
pipe.unet.load_state_dict({k: lora_scale * v for k, v in pipe.unet.state_dict().items()})
|
127 |
+
pipe.text_encoder.load_state_dict({k: lora_scale * v for k, v in pipe.text_encoder.state_dict().items()})
|
|
|
|
|
128 |
|
129 |
if ip_adapter_checkbox:
|
130 |
pipe.load_ip_adapter("h94/IP-Adapter",
|