import torch, torchvision import sys # sys.path.insert(0, 'test_mmpose/') try: from mmcv.ops import get_compiling_cuda_version, get_compiler_version except: import mim mim.install('mmcv-full==1.5.0') import mmpose import gradio as gr from mmpose.apis import (inference_top_down_pose_model, init_pose_model, vis_pose_result, process_mmdet_results) from mmdet.apis import inference_detector, init_detector from PIL import Image import cv2 import numpy as np pose_config = 'configs/topdown_heatmap_hrnet_w48_coco_256x192.py' pose_checkpoint = 'hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth' det_config = 'configs/faster_rcnn_r50_fpn_1x_coco.py' det_checkpoint = 'faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' # initialize pose model pose_model = init_pose_model(pose_config, pose_checkpoint, device='cuda') # initialize detector det_model = init_detector(det_config, det_checkpoint, device='cuda') def predict(img): mmdet_results = inference_detector(det_model, img) person_results = process_mmdet_results(mmdet_results, cat_id=1) pose_results, returned_outputs = inference_top_down_pose_model( pose_model, img, person_results, bbox_thr=0.3, format='xyxy', dataset=pose_model.cfg.data.test.type) vis_result = vis_pose_result( pose_model, img, pose_results, dataset=pose_model.cfg.data.test.type, show=False) #original_image = Image.open(img) width, height, channels = img.shape #vis_result = cv2.resize(vis_result, dsize=None, fx=0.5, fy=0.5) print(f"POSE_RESULTS: {pose_results}") # define colors for each body part body_part = { "nose": 0, "left_eye": 1, "right_eye": 2, "left_ear": 3, "right_ear": 4, "left_shoulder": 5, "right_shoulder": 6, "left_elbow": 7, "right_elbow": 8, "left_wrist": 9, "right_wrist": 10, "left_hip": 11, "right_hip": 12, "left_knee": 13, "right_knee": 14, "left_ankle": 15, "right_ankle": 16 } orange=(51,153,255) blue=(255,128,0) green=(0,255,0) # create a black image of the same size as the original image black_img = np.zeros((width, height, 3), np.uint8) # iterate through each person in the POSE_RESULTS data for person in pose_results: # get the keypoints for this person keypoints = person['keypoints'] # draw lines between keypoints to form a skeleton skeleton = [("right_eye", "left_eye", orange),("nose", "left_eye", orange), ("left_eye", "left_ear", orange), ("nose", "right_eye", orange), ("right_eye", "right_ear", orange), ("left_shoulder", "left_ear", orange),("right_shoulder", "right_ear", orange), ("left_shoulder", "right_shoulder", orange), ("left_shoulder", "left_elbow", green), ("right_shoulder", "right_elbow",blue), ("left_elbow", "left_wrist",green), ("right_elbow", "right_wrist",blue), ("left_shoulder", "left_hip",orange), ("right_shoulder", "right_hip", orange), ("left_hip", "right_hip", orange), ("left_hip", "left_knee",green), ("right_hip", "right_knee",blue), ("left_knee", "left_ankle",green), ("right_knee", "right_ankle",blue)] for start_part, end_part, color in skeleton: start_idx = list(body_part.keys()).index(start_part) end_idx = list(body_part.keys()).index(end_part) if keypoints[start_idx][2] > 0.1 and keypoints[end_idx][2] > 0.1: pt1 = (int(keypoints[start_idx][0]), int(keypoints[start_idx][1])) pt2 = (int(keypoints[end_idx][0]), int(keypoints[end_idx][1])) cv2.line(black_img, pt1, pt2, color, thickness=2, lineType=cv2.LINE_AA) # draw circles at each keypoint #for i in range(keypoints.shape[0]): # pt = (int(keypoints[i][0]), int(keypoints[i][1])) # cv2.circle(black_img, pt, 3, (255, 255, 255), thickness=-1, lineType=cv2.LINE_AA) # write black_img to a jpg file cv2.waitKey(0) cv2.imwrite("output.jpg", black_img) cv2.destroyAllWindows() return vis_result, "output.jpg" example_list = ['examples/demo2.png'] title = "MMPose estimation" description = "" article = "" # Create the Gradio demo demo = gr.Interface(fn=predict, inputs=gr.Image(), outputs=[gr.Image(label='Prediction'), gr.Image(label='Poses')], examples=example_list, title=title, description=description, article=article) # Launch the demo! demo.launch()