Update app.py
Browse files
app.py
CHANGED
@@ -1,52 +1,40 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
from tensorflow.keras.preprocessing import image
|
4 |
import numpy as np
|
5 |
from PIL import Image
|
6 |
|
7 |
# Function to load and preprocess the uploaded image
|
8 |
def load_and_preprocess_image(uploaded_image, target_size=(224, 224)):
|
9 |
-
img = Image.open(uploaded_image)
|
10 |
-
img = img.resize(target_size)
|
11 |
-
img_array = np.array(img)
|
12 |
-
img_array = np.expand_dims(img_array, axis=0)
|
13 |
-
img_array = img_array / 255.0
|
14 |
return img_array
|
15 |
|
16 |
-
# Load your pre-trained model
|
17 |
-
@st.cache(allow_output_mutation=True) # Cache the model to avoid reloading it each time
|
18 |
def load_cnn_model():
|
19 |
-
model = load_model('dementia_cnn_model.h5') #
|
20 |
return model
|
21 |
|
22 |
# Streamlit App UI
|
23 |
st.title("Dementia Detection using CNN")
|
24 |
st.write("Upload a brain scan (JPG format), and the model will predict its class.")
|
25 |
|
26 |
-
# Upload image button
|
27 |
uploaded_file = st.file_uploader("Choose a JPG image...", type="jpg")
|
28 |
|
29 |
-
# If an image is uploaded, process it
|
30 |
if uploaded_file is not None:
|
31 |
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
|
32 |
st.write("Classifying...")
|
|
|
|
|
33 |
|
34 |
-
#
|
35 |
-
processed_image = load_and_preprocess_image(uploaded_file, target_size=(224, 224))
|
36 |
-
|
37 |
-
# Load the model
|
38 |
-
model = load_cnn_model()
|
39 |
-
|
40 |
-
# Make predictions
|
41 |
predictions = model.predict(processed_image)
|
42 |
predicted_class = np.argmax(predictions, axis=1)
|
43 |
|
44 |
-
# Map the class index to the actual class names
|
45 |
class_names = ['Moderate Dementia', 'Very Mild Dementia', 'Mild Dementia', 'Non Demented']
|
46 |
result = class_names[predicted_class[0]]
|
47 |
|
48 |
-
# Display the prediction
|
49 |
st.write(f"Predicted Class: **{result}**")
|
50 |
-
else:
|
51 |
-
st.write("Please upload an image to classify.")
|
52 |
-
|
|
|
1 |
import streamlit as st
|
2 |
+
import tensorflow as tf
|
3 |
from tensorflow.keras.preprocessing import image
|
4 |
import numpy as np
|
5 |
from PIL import Image
|
6 |
|
7 |
# Function to load and preprocess the uploaded image
|
8 |
def load_and_preprocess_image(uploaded_image, target_size=(224, 224)):
|
9 |
+
img = Image.open(uploaded_image)
|
10 |
+
img = img.resize(target_size)
|
11 |
+
img_array = np.array(img)
|
12 |
+
img_array = np.expand_dims(img_array, axis=0)
|
13 |
+
img_array = img_array / 255.0
|
14 |
return img_array
|
15 |
|
16 |
+
# Load your pre-trained model
|
|
|
17 |
def load_cnn_model():
|
18 |
+
model = tf.keras.models.load_model('dementia_cnn_model.h5') # Ensure correct loading
|
19 |
return model
|
20 |
|
21 |
# Streamlit App UI
|
22 |
st.title("Dementia Detection using CNN")
|
23 |
st.write("Upload a brain scan (JPG format), and the model will predict its class.")
|
24 |
|
|
|
25 |
uploaded_file = st.file_uploader("Choose a JPG image...", type="jpg")
|
26 |
|
|
|
27 |
if uploaded_file is not None:
|
28 |
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
|
29 |
st.write("Classifying...")
|
30 |
+
|
31 |
+
processed_image = load_and_preprocess_image(uploaded_file)
|
32 |
|
33 |
+
model = load_cnn_model() # Load the model
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
predictions = model.predict(processed_image)
|
35 |
predicted_class = np.argmax(predictions, axis=1)
|
36 |
|
|
|
37 |
class_names = ['Moderate Dementia', 'Very Mild Dementia', 'Mild Dementia', 'Non Demented']
|
38 |
result = class_names[predicted_class[0]]
|
39 |
|
|
|
40 |
st.write(f"Predicted Class: **{result}**")
|
|
|
|
|
|